
Recursive Function Theory

John David Stone

November 20, 2019



ii



Contents

1 Introduction 1

2 Functions 3

3 Primitive Recursive Functions 5

4 Modelling Boolean Values 13

5 More Arithmetic Functions 17

6 Accumulators 21

7 Data Structures 27

8 Course-of-Values Recursion 37

9 Additional List Functions 45

10 Partial Functions 49

11 Encoding Partial Recursive Functions 53

12 Computations 63

13 The Universality Theorem 73

14 The Halting Predicate 75

15 Recursive and Recursively Enumerable Sets 77

16 Turing Machines and Their Configurations 83

17 Encoding Configurations 91

18 Simulating Turing Machines in Operation 97

19 The Models Are Equivalent 99

iii



iv CONTENTS

20 The Parameter Theorem 101

21 The Recursion Theorem 107

22 Rice’s Theorem 111



Chapter 1

Introduction

One can think of a computer, as it executes a program, as a physical realization
of a mathematical function—a mapping from the program’s inputs to its output.
One way to pursue the question of what the capabilities of computers are, there-
fore, is to try to delimit the set of functions that they can realize. Can every
mathematical function be realized by some suitably programmed computer, or
are there some that are so complicated or so irregular that they cannot be com-
puted? If every mathematical function can be computed, is there some way to
automate the process of writing a program to compute a given function? If there
are mathematical functions that cannot be computed, is there some systematic
way to distinguish those that can from those that cannot, or at least to prove
that certain functions cannot be realized by suitably programmed computers?

To simplify these questions slightly, we shall start by considering only func-
tions that take natural numbers as inputs and produce natural numbers as
outputs. (We’ll use the symbol ‘N’ for the set {0, 1, 2, . . .} of non-negative in-
tegers and the term ‘natural numbers’ for its members.) Of course, suitably
programmed computers are capable of computing functions on inputs of vari-
ous types, such as signed integers, Booleans, characters, strings, lists, vectors,
and so on. However, our theorems will be no less general if we initially re-
strict ourselves to functions that operate on natural numbers. As we’ll see, it is
straightforward to encode inputs of other types as natural numbers and decode
the natural-number outputs into such other types, using techniques that are
themselves readily computable.

Many programming languages also purport to offer real numbers as a data
type, but this is a misnomer. The “real” values that figure in computer pro-
grams are approximations—approximations of good quality, in most cases, but
approximations nevertheless. In most applications, this inexactness is harmless.
It is generally impossible to measure continuous quantities perfectly to begin
with, and modelling these inexact inputs with slightly inexact representations
of real numbers usually makes little or no difference in the utility of the outputs.
From the mathematician’s point of view, however, the approximations on which
computers operate constitute only a tiny subset of the real numbers. It would
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2 CHAPTER 1. INTRODUCTION

be possible, without loss of information, to encode each of those approximations
as a different natural number, treating them as data structures similar to those
mentioned above.

Some programming languages, such as Scheme, perform computations that
take procedures as inputs and produce procedures as outputs. Here, too, we
would lose no generality if we could only figure out a way to encode mathematical
functions (the very ones that we are studying, in fact) as natural numbers and
to decode natural numbers back into mathematical functions. In this case,
however, it is far from obvious that such an encoding is possible. This is a
question that we’ll have to study carefully in a later section.

Exercises

1–1 A deck of playing cards comprises one card of each of thirteen ranks (ace,
king, queen, jack, ten, nine, eight, seven, six, five, four, trey, and deuce) in each
of four suits (spades, hearts, diamonds, and clubs)—fifty-two different cards
altogether. Suggest a way of encoding each of these cards as a unique natural
number in the range from 0 to 51 (inclusive).

1–2 Given a natural number in the range from 0 to 51, how would you figure
out which card it encodes, in the encoding system you proposed in your solution
to the preceding exercise?

1–3 When all of the cards in a deck are assembled in a stack, we can think
of them as being arranged in a linear order, from the top of the stack to the
bottom. Suggest a way of encoding any such arrangement of a deck of playing
cards as a unique natural number, and a way of decoding a given natural number
to determine which arrangement it encodes (if any).

1–4 There is a mathematical function that maps every rational number to
1 and every irrational number to 0. Could a suitably programmed computer
realize this function?



Chapter 2

Functions

Since so many different kinds of data can be encoded as natural numbers, we’ll
initially consider only functions that take natural numbers as inputs and produce
natural numbers as outputs. We’ll consider functions with any number of inputs:
singulary functions that take one input, binary ones that take two, ternary ones
that take three, and so on, as well as nullary ones that take no inputs. Giving
the valence (the number of inputs) of a function is therefore sufficient to specify
its domain: The domain of a function of valence n is Nn. Also, the range of the
functions that we’ll be considering is always the same: it’s N.

Usually, when a mathematician wants to specify a function, she writes a
kind of defining equation for it, like this:

f(x, y) = x2 − 2xy + y2

The left-hand side of such an equation indicates the function’s valence (in this
case, 2) and gives a name to each of the function’s inputs, and the right-hand
side is a recipe for constructing the output from those inputs.

Because of the open-ended nature of mathematical notation, however, the
boundaries of the set of functions that can be defined by means of such equa-
tions are somewhat vague. Moreover, it’s not immediately apparent that every
mathematical expression that could appear on the right-hand side of such an
equation really corresponds to a computational procedure. What if that expres-
sion includes some bizarre integral that doesn’t have a closed form, or asks us
to find the limit of some series that has not been proven to converge? In order
to use mathematical functions to model computation, we shall need a more dis-
ciplined notation, one that guarantees that the computational process denoted
by any expression consists of simple, effective steps.

Such a notation would be similar to a small, tightly structured, high-level
programming language. The core of such a language consists of a small collection
of primitives and a finite collection of mechanisms for combining them so as to
define computational procedures of increasing complexity and subtlety. Ideally,
the mechanisms of combination should apply not only to the primitives, but
also, recursively, to the products of previous acts of construction. In that way,
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4 CHAPTER 2. FUNCTIONS

we can leverage the power of a finite core language so as to generate an infinite
range of expressions.

Exercises

2–1 Give an example of a ternary function. Write an equation that specifies
(on its right-hand side) how the function’s output depends on its inputs.

2–2 Give an example of a nullary function. Write an equation that indicates
its valence, 0, and specifies its output.

2–3 Would the programming language that you know best be a suitable no-
tation for defining mathematical functions? Justify your answer.



Chapter 3

Primitive Recursive
Functions

In developing a notation well suited to the formal definition of mathematical
functions, we begin by giving names to certain primitive functions that are so
simple that one might consider them trivial:

• zero, a nullary function that produces the natural number 0 as its output.

• successor: a singulary function that produces as output the successor of
its input. For instance, given the natural number 5 as input, successor
outputs 6.

• For any natural numbers m and n such that m < n, prmn : a function
of valence n that outputs, without change, the input that it receives in
(zero-based) position m. For instance, given the inputs 12, 19, 16, and 5,
pr2

4 outputs 16.

We can describe these functions equationally, in conventional mathematical
notation:

zero() = 0,

successor(x) = x+ 1,

prmn (x0, . . . , xn−1) = xm.

In this context, however, such equations are not definitions, but mere exposi-
tory notes, helping readers to understand exactly which functions we’re talking
about. Rather, these are the functions that we’re going to be using to define
everything else (including, for instance, the addition operation). We have to be
able to identify and understand the primitive functions without formal defini-
tions; otherwise, our definitions will be circular.

We posit that all of these functions can be computed. Since natural numbers
can be arbitrarily large, this assumption already goes somewhat beyond what
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6 CHAPTER 3. PRIMITIVE RECURSIVE FUNCTIONS

is physically possible. Finding the successor of a natural number containing
21000000 bits, for instance, is not a straightforward operation on a real-world
computer. We know how to do the computation, but we don’t have enough
storage, enough electrical power, or enough time actually to carry it out. Since
these limitations on the physical representation of natural numbers are not
relevant to the theoretical possibility or impossibility of computation, however,
we shall ignore them.

Using these primitive functions, we shall define a number of others, using
two modes of combination:

• Composition: If we are given a function f of valence m and m functions
g0, . . . , gm−1 that all have the same valence n, we can define a new function
h of valence n by composition. In conventional mathematical notation, the
equation specifying the function h obtained in this way would look like
this:

h(x0, . . . , xn−1) = f(g0(x0, . . . , xn−1), . . . , gm−1(x0, . . . , xn−1)).

In other words, given n natural numbers as inputs, one computes h’s
output by providing all n of the given values as inputs to each of the
functions g0, . . . , gm−1, collecting the m outputs, providing them as inputs
to f , and taking the resulting output from f to be the output from h. We
shall write such compositions in a more concise notation, thus:

[◦mn f g0 ... gm−1]

The symbol ‘◦mn ’ expresses the operation of composition. The superscript
‘m’ indicates the valence of f (and the number of g-functions from which
it receives its inputs). The subscript ‘n’ indicates the valence of each of
the g-functions (and the valence of the composite function h).

• Recursion: Given a function f of valence n and a function g of valence
n + 2, we can define a new function h of valence n + 1 by recursion over
natural numbers. In conventional mathematical notation, the specification
of such a function is set out in a pair of recursion equations:

h(x0, . . . , xn−1, 0) = f(x0, . . . , xn−1),

h(x0, . . . , xn−1, t+ 1) = g(t, h(x0, . . . , xn−1, t), x0, . . . , xn−1)

for every t ∈ N.

The definition of h is recursive with respect to the last input. The output
for the base case, in which the last input to h is 0, is computed by applying
f to all of the other inputs; the output for the inductive step, where the
last input is some positive integer t + 1, is computed by applying g to
the predecessor t of the last input, the value h(x0, . . . , xn−1, t) of h at the
previous step, and the remaining inputs x0, . . . , xn−1.
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Once again, we’ll write such specifications in a much more concise way:

[gn f g]

The symbol ‘gn’ expresses the operation of recursion, with the subscript
‘n’ indicating the valence of the base-case function f (and requiring that
the valence of g is n+2, and the valence of the recursively defined function
h is n+ 1).

A primitive recursive function is one that can be built up from these primitive
functions using only composition and recursion. The set of primitive recursive
functions is surprisingly extensive and diverse. Let’s dig in and build some of
the more interesting ones.

Addition

Theorem 3.1 Addition is a primitive recursive function.

Proof: Conventionally, addition is defined by the recursion equations

add(x, 0) = x,

add(x, t+ 1) = successor(add(x, t)).

In terms of our primitive functions, these equations could be written thus:

add(x, 0) = pr0
1(x),

add(x, t+ 1) = successor(pr1
3(t, add(x, t), x)).

Hence we can use composition and recursion to define add in terms of the
primitives:

add ≡ [g1 pr0
1 [◦13 successor pr1

3]].

Since successor and pr1
3 are primitive functions, and are therefore primitive

recursive, [◦13 successor pr1
3] is also primitive recursive. Since pr0

1 is prim-
itive (and therefore primitive recursive) and [◦13 successor pr1

3] is primitive
recursive, add is also primitive recursive.

Doubling

Theorem 3.2 Doubling is a primitive recursive function.

Proof: To double a number, add it to itself:

double(x) = add(x, x)

= add(pr0
1(x), pr0

1(x)).
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Thus we can define the singulary function double by composition:

double ≡ [◦21 add pr0
1 pr0

1].

The theorem follows by Theorem 3.1 and the definition of ‘primitive recur-
sive’.

Multiplication

Theorem 3.3 Multiplication is a primitive recursive function.

Proof: The recursion equations for the binary function multiply are:

multiply(x, 0) = 0,

multiply(x, t+ 1) = x · t+ x,

or, in terms of our primitive functions,

multiply(x, 0) = zero()

= [◦01 zero](x),

multiply(x, t+ 1) = add(multiply(x, t), x),

= add(pr1
3(t, multiply(x, t), x),

pr2
3(t, multiply(x, t), x)),

so that
multiply ≡ [g1 [◦01 zero] [◦23 add pr1

3 pr2
3]].

The notation ‘[◦01 zero]’ may seem a little puzzling. The idea is that, in the
base case of the recursion that defines multiply, we want a singulary function
that yields the output 0 no matter what input it is given (reflecting the fact that
multiplying any natural number by 0 yields 0 as the product). The function
zero itself doesn’t quite do the job, since it is nullary rather than singulary.
But we can “compose” it with zero singulary functions to obtain a singulary
function, which in conventional mathematical notation would be specified by
the composition equation

[◦01 zero](x) = zero().

This is the special case of the general composition equation for m = 0 and n = 1,
with f being zero.

Let’s adopt the concise notation ‘zeron’ for ‘[◦0n zero]’, the function of
valence n that ignores its inputs and always outputs 0. The we can define
multiply thus:

multiply ≡ [g1 zero1 [◦23 add pr1
3 pr2

3]].
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More generally, whenever f is a function of valence 0, we’ll write fn for a function
of valence n defined by

fn ≡ [◦0n f].

Exponentiation

Theorem 3.4 Exponentiation is a primitive recursive function.

Proof: The recursion equations for the exponentiation function, which we’ll
call raise-to-power, are quite similar to those for multiply:

raise-to-power(x, 0) = 1,

raise-to-power(x, t+ 1) = multiply(raise-to-power(x, t), x).

For the first equation, we need a singulary function that always outputs 1. It
seems natural to define one by taking the successor of the output of zero, thus:

one ≡ [◦10 successor zero],

but this again makes one a nullary function, just as zero is. Hence the function
we really need is one1 (that is, [◦01 one], the composition of one with zero
singulary functions).

(The function one1 could also be expressed as [◦11 successor zero1]. If
you write out the composition equations and simplify, you’ll find that in either
case you wind up with a singulary function that outputs 1 no matter what its
input is.)

Thus the definition of raise-to-power is

raise-to-power ≡ [g1 one1 [◦23 multiply pr1
3 pr2

3]].

Predecessor and Subtraction

The inverse of successor would be a function that takes every positive integer
into its predecessor. If we’re willing to accept the arbitrary but not too implau-
sible convention that an attempt to take the predecessor of 0 yields 0, we can
define a suitable predecessor function using recursion.

Theorem 3.5 The predecessor function is primitive recursive.

Proof: The recursion equations are

predecessor(0) = 0,

predecessor(t+ 1) = t

= pr0
2(t, predecessor(t)),
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or, in our notation,

predecessor ≡ [g0 zero pr0
2].

With the help of the predecessor function, we can define a subtraction func-
tion. Strictly speaking, ordinary subtraction is not closed over the natural
numbers; since we want a function that has N as its range, we’ll continue the
policy of having 0 play an additional role as a kind of error result, so that
“subtracting” a greater number from a lesser one yields 0.

Theorem 3.6 Subtraction is a primitive recursive function.

Proof: Here are the recursion equations for this slightly offbeat subtraction:

subtract(x, 0) = x

= pr0
1(x),

subtract(x, t+ 1) = predecessor(subtract(x, t))

= predecessor(pr1
3(t, subtract(x, t), x)).

So our definition is

subtract ≡ [g1 pr0
1 [◦13 predecessor pr1

3]].

In mathematics, this function is sometimes called “monus” and represented
by the infix operator ‘ . ’.

It turns out that the policy of having the results of the subtract function
“bottom out” at 0 has some technical advantages. For instance, it gives us an
easy way to define a function that computes the disparity between two natural
numbers, that is, the result of subtracting the lesser number from the greater
one (or 0, if the inputs are equal).

Theorem 3.7 Disparity is a primitive recursive function.

Proof: Since the result will be 0 when we do the subtraction the “wrong”
way, we can simply do it both ways and add the results:

disparity(x0, x1) = (x0
. x1) + (x1

. x0)

= add(subtract(x0, x1), subtract(x1, x0))

= add(subtract(x0, x1),

subtract(pr1
2(x0, x1), pr0

2(x0, x1))),

so the definition is

disparity ≡ [◦22 add subtract [◦22 subtract pr1
2 pr0

2]].
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Exercises

3–1 Name the projection function that outputs the next-to-last of its seven
inputs.

3–2 Define the square function that maps every natural number to its square,
using the formal notation introduced in this section.

3–3 Prove that the square function is primitive recursive.

3–4 Define the factorial function on natural numbers, using the formal no-
tation introduced in this section. Prove that the factorial function is primitive
recursive.

3–5 Prove that the function f specified in conventional mathematical notation
by the equation

f(x, y) = x2 + 2xy + y2

is primitive recursive.
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Chapter 4

Modelling Boolean Values

The universe of natural numbers is large and rich enough that we can use it to
represent values of other data types in systematic ways.

Let’s begin with Booleans. There are actually at least two reasonably nat-
ural conventions for representing Boolean values: We could choose two specific
natural numbers, most plausibly 0 and 1, to represent the two values of the
Boolean data type. Alternatively, we could follow the example set by C and
single out 0 as the sole representation of falsity, while allowing all other natural
numbers to be treated as equally valid representations of truth. This would have
the nice feature that disjunction could be simulated by addition and conjunction
by multiplication. Also, any function could then be used as a predicate.

We’ll split the difference between these two approaches, following the design
principle known as Postel’s law: Be liberal in what you accept as input and
conservative in what you provide as output. In this case, the principle implies
that we should allow any positive integer to count as a “truish” value in Boolean
contexts; but the Boolean functions that we define will output only the values
0 and 1, and we’ll reserve the term ‘predicate’ for functions that meet this
restriction.

One simple example of a primitive recursive function that is a predicate is
the singulary function zero?, which outputs 1 if its input is 0 and 0 otherwise.

Theorem 4.1 The predicate zero? is a primitive recursive function.

Proof: Its recursion equations are

zero?(0) = 1,

zero?(t+ 1) = 0,

which yields the definition

zero? ≡ [g0 one zero2].

13
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The function zero2, of course, is the binary function that one obtains by
composing zero with zero binary functions. That’s the way the valences have
to be in order to make the recursion rule work—to define a singulary function
by recursion, the function that performs the inductive step must be binary, even
if it ignores both of its inputs (which in this case would be t and zero?(t)).

Given any natural number as input, zero? outputs the canonical represen-
tative of the the opposite Boolean value, so it can also be thought of as an
implementation of the Boolean operator not.

Theorem 4.2 Boolean negation is a primitive recursive function.

Proof:
not ≡ zero?

A natural number is positive just in case it is not zero. This gives us an easy
way to define the predicate positive?.

Theorem 4.3 The predicate positive? is a primitive recursive function.

Proof:
positive? ≡ [◦11 not zero?]

We’ll sometimes use the name ‘truish?’ for the same function.
Here is a slightly more complicated example:

Theorem 4.4 The predicate even? is a primitive recursive function.

Proof: The recursion equations for even? are

even?(0) = 1,

even?(t+ 1) = not(even?(t)),

which yield the definition

even? ≡ [g0 one [◦12 not pr1
2]].

The product of two numbers is truish if and only if both of them are truish,
so multiplication could serve as the and function; but, in accordance with the
convention announced above, we’ll force the result to be either 0 or 1.

Theorem 4.5 Conjunction is a primitive recursive function.

Proof:
and ≡ [◦12 truish? multiply].
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The disjunction of two Boolean values is the negation of the conjunction of
their negations.

Theorem 4.6 Disjunction is a primitive recursive function.

Proof:

or(x0, x1) = not(and(not(x0), not(x1)))

= not(and(not(pr0
2(x0, x1)),

not(pr1
2(x0, x1))))

so that

or ≡ [◦12 not [◦22 and [◦12 not pr0
2] [◦12 not pr1

2]]].

Alternatively, we could define or as [◦12 truish? add]. The same function
is obtained using either construction.

Conditionals

In constructing primitive recursive functions, we shall often want to define them
by cases, applying some test to the given inputs to determine which of two
functions to apply to them. Specifically, if p, f , and g are primitive recursive
functions with the same valence n, then we should be able to define a new
function h of valence n that matches f on any inputs that satisfy p (that is, any
inputs for which p outputs truish values) and matches g on inputs that don’t
satisfy p.

It turns out, however, that adding this construction as a third mechanism for
defining primitive recursive functions is superfluous, because we can simulate it
arithmetically.

Theorem 4.7 For any primitive recursive predicate p and any primitive recur-
sive functions f and g having the same valence as p, the function h defined by
the case-construction

h(x0, . . . , xn−1) =

{
f(x0, . . . , xn−1) if p(x0, . . . , xn−1) > 0,
g(x0, . . . , xn−1) otherwise.

is primitive recursive.

Proof: The idea is to multiply the value that f yields by the value that p
yields, and the value that g yields by the opposite Boolean value. One or the
other of the opposite Boolean values will be 0, and hence one of these products
is also 0; the other Boolean value will be 1, so that the other product is simply
the value of the non-Boolean multiplicand. Hence, if we add the two products
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together, we’ll be adding 0 to the value output by the selected function—f if p
yields 1, g if it yields 0. In other words:

h(x0, . . . , xn−1) = f(x0, . . . , xn−1) · truish?(p(x0, . . . , xn−1)) +

g(x0, . . . , xn−1) · not(p(x0, . . . , xn−1)).

So we can define h thus:

h ≡ [◦2n add

[◦2n multiply f [◦1n truish? p]]

[◦2n multiply g [◦1n not p]]].

We’ll use expressions of the form ‘[¿n p f g]’ for functions defined by cases
in this way. Note carefully, however, what Theorem 4.7 tells us about this addi-
tion to our notation: It is convenient, but formally superfluous. If necessary, we
could rewrite any expression that uses ‘¿n’ so as to use only composition and
recursion operations. The new convention allows us to specify primitive recur-
sive functions more concisely, but it does not extend or enrich the underlying
concept of primitive recursivity.

Exercises

4–1 The exclusive-or function takes two Boolean inputs and outputs the true
Boolean value if one and only one of the inputs is true. It outputs the false
Boolean value if both inputs are true or both false. Model this function using
natural numbers and show that the exclusive-or function of your model is
primitive recursive.

4–2 The duplex function takes three Boolean inputs and outputs the second
input if the first input is true. It outputs its third input if the first input is false.
Model this function using natural numbers and show that the duplex function
of your model is primitive recursive.

4–3 Define a function halve that divides its input by 2, discarding the re-
mainder and outputting the quotient. (So, for instance, halve(7) = 3.) Hint:
Use a direct recursion in which the step function is a conditional.

4–4 Define a function collatz-step that, given a natural number n as input,
outputs halve(n) if n is even, or 3n+ 1 if n is odd. Prove that collatz-step

is primitive recursive.

4–5 Define a binary, primitive recursive function positive-count that out-
puts 0 if both of its inputs are 0, outputs 1 if one of its inputs is 0 and the other
is positive, and outputs 2 if both of its inputs are positive.
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More Arithmetic Functions

Comparison Predicates

Theorem 5.1 Equality is a primitive recursive function.

Proof: We can test whether two numbers are equal by checking whether
their disparity is 0:

equal? ≡ [◦12 zero? disparity].

Theorem 5.2 The predicate less-or-equal? is a primitive recursive function.

Proof: We can test whether one number is less than or equal to another by
subtracting (using “monus” subtraction) and checking whether the result is 0:

less-or-equal? ≡ [◦12 zero? subtract].

Theorem 5.3 The predicate greater-or-equal? is a primitive recursive func-
tion.

Proof: To reverse the direction of the comparison, we can use projection
functions to swap the operands:

greater-or-equal?(x0, x1) = less-or-equal?(x1, x0)

= less-or-equal?(pr1
2(x0, x1), pr0

2(x0, x1)),

so that the definition is

greater-or-equal? ≡ [◦22 less-or-equal? pr1
2 pr0

2].

17
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The remaining inequality predicates are the negations of the preceding ones:

less? ≡ [◦12 not greater-or-equal?],

greater? ≡ [◦12 not less-or-equal?],

unequal? ≡ [◦12 not equal?].

Division

Dividing one member of N by another yields two results: a quotient and a
remainder. Since applying a function yields a single result, we will consider
division as comprising two functions, one yielding the quotient and the other
the remainder.

Theorem 5.4 The function remainder is primitive recursive.

Proof: It turns out to be simpler to write recursion equations for the remain-
der if we initially write the divisor on the left and the dividend in the recursion
slot, on the right. I’ll call this version of the remainder function redniamer,
since its inputs are (from the conventional point of view) backwards:

redniamer(x0, 0) = 0,

redniamer(x0, t+ 1) =

{
0 if redniamer(x0, t) + 1 = x0

redniamer(x0, t) + 1 otherwise,

or, making the projections more explicit,

redniamer(x0, 0) = zero(),

redniamer(x0, t+ 1) =


zero()

if equal?(pr2
3(t, redniamer(x0, t), x0),

successor(pr1
3(t, redniamer(x0, t), x0)))

successor(pr1
3(t, redniamer(x0, t), x0))

otherwise.

Thus

redniamer ≡ [g1 zero1 [¿3 [◦23 equal? pr2
3 [◦13 successor pr1

3]]

zero3

[◦13 successor pr1
3]]].

To put the inputs in the more usual order (dividend as the first input, divisor
as the second), we compose redniamer with projection functions:

remainder ≡ [◦22 redniamer pr1
2 pr0

2].
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Under this definition, incidentally, division by 0 is permitted, but it leaves
the entire dividend as the remainder. (The test that “resets” the remainder-
counter to 0 never succeeds when the divisor is 0.)

Theorem 5.5 Divisibility is a primitive recursive function.

Proof: The primitive recursive predicate divides? tests whether its first
input evenly divides its second:

divides?(x0, x1) = zero?(redniamer(x0, x1)).

or, using our notation,

divides? ≡ [◦22 zero? redniamer].

Theorem 5.6 The function quotient is primitive recursive.

Proof: We can write recursion equations similar to those for redniamer,
again beginning with a version in which the divisor is the first input and the
dividend the second:

tneitouq(x0, 0) = 0,

tneitouq(x0, t+ 1) =

 successor(tneitouq(x0, t))
if divides?(x0, successor(t)),

tneitouq(x0, t) otherwise,

which yields the definition

tneitouq ≡ [g1 zero1 [¿3 [◦23 divides? pr2
3 [◦13 successor pr0

3]]

[◦13 successor pr1
3]

pr1
3]].

The quotient function, once again, can be derived from tneitouq by swap-
ping the inputs:

quotient ≡ [◦22 tneitouq pr1
2 pr0

2].

Exercises

5–1 Define a ternary, primitive recursive predicate between? that determines
whether its second input lies between its first and third inputs—in other words,
whether the second input is greater than one of the remaining inputs and less
than the other. Equality doesn’t count—between? should output 0 if any two
of its inputs are equal.
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5–2 Define a ternary, primitive recursive predicate common-divisor? that
determines whether its first input evenly divides both the second and third
inputs.

5–3 Like remainder, quotient outputs a value even when its second input
is 0—again, “division” by 0 is permitted. What value does quotient output in
such cases? In other words, what is quotient(n, 0)?



Chapter 6

Accumulators

Bounded Quantifiers

For any function p of valence n + 1, there is a cumulative predicate p̂ of the
same valence that is satisfied by some (n+1)-tuple (x0, . . . , xn−1, xn) of natural
numbers if, and only if, p outputs a truish value for all the (n + 1)-tuples of
the form (x0, . . . xn−1, x) such that x ≤ xn. The cumulative predicate is like
an extended conjunction of applications of p to (n+ 1)-tuples with smaller last
elements. The operation that converts p into p̂ is called bounded quantification.

Theorem 6.1 For any primitive recursive function p, the predicate p̂ defined
by

p̂(x0, . . . , xn−1, xn) =

{
1 if p(x0, . . . , xn−1, x) > 0 for all x ≤ xn
0 otherwise

is a primitive recursive function.

Proof: For any primitive recursive predicate p, we can define p̂ by the recur-
sion equations

p̂(x0, . . . , xn−1, 0) = truish?(p(x0, . . . , xn−1, 0)),

p̂(x0, . . . , xn−1, t+ 1) = and(p̂(x0, . . . , xn−1, t), p(x0, . . . , xn−1, t+ 1)),

21
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or, in terms of previously defined functions,

p̂(x0, . . . , xn−1, 0) = truish?(p(pr0
n(x0, . . . , xn−1),

pr1
n(x0, . . . , xn−1),
. . . ,

prn−1
n (x0, . . . , xn−1),

zero())),

p̂(x0, . . . , xn−1, t+ 1) =
and(
pr1

n+2(t, p̂(x0, . . . , xn−1, t), x0, . . . , xn−1),
p(pr2

n+2(t, p̂(x0, . . . , xn−1, t), x0, . . . , xn−1),
. . . ,

prn+1
n+2(t, p̂(x0, . . . , xn−1, t), x0, . . . , xn−1),

successor(
pr0

n+2(t, p̂(x0, . . . , xn−1, t), x0, . . . , xn−1))) .

Hence

p̂ ≡ [gn [◦1n truish? [◦n+1
n p pr0

n ... prn−1
n zeron]]

[◦2n+2 and

pr1
n+2

[◦n+1
n+2 p pr2

n+2 . . . prn+1
n+2 [◦1n+2 successor pr0

n+2]]]].

We use an expression of the form ‘[∀̄n p]’ for the bounded quantification of
p. For instance,

[∀̄0 even?](117) = 0,

since it is not the case that every natural number up to and including 117 is
even; but

[∀̄1 divides?](1, 40) = 1,

because 1 does divide every natural number up to and including 40.

Note that the subscript indicates the number of fixed parameters and so is
one less than the valence of the predicate that is being defined.

Bounded Summation

The bounded sum Σf of a singulary function f is a function that takes one
input, the upper bound x, and outputs the sum of the values of f for all of the
inputs from 0 up to and including x:

Σf(x) = f(0) + · · ·+ f(x) =

x∑
t=0

f(t).
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We can extend this idea to functions of any positive valence: The bounded sum
Σf of a function f of valence n+ 1 is defined by

Σf(x0, . . . , xn) = f(x0, . . . , xn−1, 0) + · · ·+ f(x0, . . . , xn−1, xn)

=

xn∑
t=0

f(x0, . . . , xn−1, t).

Theorem 6.2 The bounded sum Σf of any primitive recursive function f is
also a primitive recursive function.

Proof: We can use the same idea that we used for bounded quantification,
but with addition rather than conjunction. The recursion equations are:

Σf(x0, . . . , xn−1, 0) = f(x0, . . . , xn−1, 0),

Σf(x0, . . . , xn−1, t+ 1) = Σf(x0, . . . , xn−1, t) + f(x0, . . . , xn−1, t+ 1),

or, in terms of previously defined functions,

Σf(x0, . . . , xn−1, 0) = f(pr0
n(x0, . . . , xn−1),

pr1
n(x0, . . . , xn−1),
. . . ,

prn−1
n (x0, . . . , xn−1),

zero()),

Σf(x0, . . . , xn−1, t+ 1) =
add(
pr1

n+2(t,Σf(x0, . . . , xn−1, t), x0, . . . , xn−1),
f(pr2

n+2(t,Σf(x0, . . . , xn−1, t), x0, . . . , xn−1),
. . . ,

prn+1
n+2(t,Σf(x0, . . . , xn−1, t), x0, . . . , xn−1),

successor(pr0
n+2(t,Σf(x0, . . . , xn−1, t), x0, . . . , xn−1))).

Hence

Σf ≡ [gn [◦n+1
n f pr0

n ... prn−1
n zeron]

[◦2n+2 add

pr1
n+2

[◦n+1
n+2 f pr2

n+2 ... prn+1
n+2 [◦1n+2 successor pr0

n+2]]].

We shall write ‘[Σ̄n f]’ for the bounded sum of f . The subscript n is the
number of fixed inputs to f (and so the valence of f is n+ 1).

Bounded Minimization

The minimum of a singulary function p under bound x, where x is a natural
number, is the least natural number i such that p(i) is truish, provided that
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there is at least one such number less than or equal to x. If there is no such
number, then the minimum is arbitrarily declared to be 0.

Once again, this idea can be generalized to functions of any positive valence:
The bounded minimization µ̄p of a function p of valence n + 1 is a function
of valence n + 1 that, when given the inputs x0, . . . , xn−1, xn, yields the least
natural number i such that i ≤ xn and p(x0, . . . , xn−1, i) is truish, or 0 if there
is no such natural number.

Theorem 6.3 The bounded minimization µ̄p of any primitive recursive predi-
cate p is a primitive recursive function.

Proof: We can define µ̄p thus:

µ̄p(x0, . . . , xn) =

 0 if [∀̄n [◦1n+1 not p]](x0, . . . , xn) > 0,
[Σ̄n [∀̄n [◦1n+1 not p]]](x0, . . . , xn)

otherwise,

or, more concisely,

µ̄p ≡ [¿n+1 [∀̄n [◦1n+1 not p]] zeron+1 [Σ̄n [∀̄n [◦1n+1 not p]]]].

The idea is that [∀̄n [◦1n+1 not p]] tests for the “error” case in which no
integer i that is less than or equal to the specified bound satisfies p, zeron+1

ensures that the result is 0 in the error case, and in all other cases the bounded
summation tallies up the natural numbers that are encountered before the first
one that satisfies p is reached (since those are the inputs for which [∀̄n [◦1n+1

not p]] outputs 1). Since the least natural number that satisfies p is equal to
the number of natural numbers that preceded it, this tally is exactly the result
we want.

We shall use expressions of the form ‘[µ̄n p]’ for bounded minimization
functions derived from predicates p in this way. Once again, the subscript
indicates the number of fixed inputs (excluding the bound), so that the valence
of [µ̄n p] is n+ 1.

Exercises

6–1 Using bounded-sum, define a singulary function termial that outputs
the sum of all of the natural numbers less than or equal to its input. Prove that
termial is primitive recursive.

6–2 The Euler φ-function counts the exact divisors of a given positive integer.
For instance, 12 has six divisors (1, 2, 3, 4, 6, and 12), so φ(12) = 6. Define
a singulary, primitive recursive function euler-phi that outputs 0 (arbitrarily)
when its input is 0 and φ(n) when its input is any positive integer n.
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6–3 Extend our formal notation to include a bounded exponential quanti-
fier, analogous to the bounded universal quantifier introduced in this section.
Prove that, for any primitive recursive function p of positive valence n + 1,
the predicate ∃p is also primitive recursive, where ∃p(x0, . . . , xn−1, xn) is 1 if
p(x0, . . . , xn−1, x) > 0 for some x ≤ xn and 0 otherwise. (Hint: Existential
quantification is definable in terms of universal quantification and negation.)

6–4 A natural number is prime if it is greater than or equal to 2 and evenly
divisible only by itself and 1. Define a singulary, primitive recursive predicate
prime? that determines whether its input is prime.

6–5 Describe the function [µ̄1 less?], explaining how its output is related
to its inputs.
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Chapter 7

Data Structures

Rather surprisingly, we can build data structures even inside the apparently flat
set N, using encoding and decoding functions to build them and to extract their
components as needed.

Pairs

For instance, consider the binary encoding function cons, defined by

cons(x0, x1) = 2x0 · (2x1 + 1).

This function maps every pair (x0, x1) of natural numbers into a different posi-
tive integer: Odd numbers encode pairs in which the first term is 0, doubles of
odd numbers (2, 6, 10, 14, and so on) encode pairs in which the first term is 1,
quadruples of odd numbers encode pairs in which the first term is 2, and so on.

Theorem 7.1 The function cons is primitive recursive.

Proof:

two ≡ [◦10 successor one],

cons ≡ [◦22 multiply

[◦22 raise-to-power two2 pr0
2]

[◦12 successor [◦12 double pr1
2]]].

We can also decode a pair to get its components, using two functions—car

to recover the first component, cdr to recover the second one.

Theorem 7.2 The functions car and cdr are primitive recursive.

The car is the least natural number y such that 2y+1 fails to divide the
pair. Since this natural number is obviously less than the one that encodes the

27
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entire pair, we can use bounded minimization to recover it. First, let’s define
the predicate to which minimization will be applied—a binary predicate d such
that d(x, y) is true just in case 2y+1 does not divide x:

d ≡ [◦12 not [◦22 divides?

[◦22 raise-to-power two2 [◦12 successor pr1
2]]

pr0
2]]

The selector function car, then, is the bounded minimum of d, with the en-
coded pair being supplied as each input—as dividend in the first input position,
and as upper bound for the predecessor of the divisor’s exponent in the second
input position:

car ≡ [◦21 [µ̄1 d] pr0
1 pr0

1].

To recover the second term of a given pair, we can raise two to the power of
the car, divide the number that encodes the pair by the resulting power to get
the odd factor, subtract one from that factor, and divide the result by two:

cdr ≡ [◦21 quotient

[◦11 predecessor

[◦21 quotient pr0
1 [◦21 raise-to-power two1 car]]]

two1].

Since cons(x0, x1) 6= 0 for any x0, x1 ∈ N, the effect of applying car and cdr

to 0 is somewhat arbitrary. If you thread through the definitions, it turns out
that car(0) = 0 and cdr(0) = 0; nevertheless, cons(0, 0) is 1, not 0. (Consider
the 0 that car and cdr return in this case as an error indicator.)

Lists

We could have explored other encodings in which ordered pairs of natural num-
bers are mapped to natural numbers with no leftovers, and in some ways that
would be a more elegant system. However, there is a rationale for setting 0 aside
as a non-pair, which experienced functional programmers have undoubtedly al-
ready anticipated: We need a spare encoding for the empty list. To formalize
this convention, we adopt the name nil for a nullary function that yields the
empty list (encoded as the natural number 0), and null? for a singulary func-
tion that determines whether its input is the empty list. Naturally, both of
these functions are primitive recursive:

nil ≡ zero,

null? ≡ zero?.

Now we can provide an encoding that maps every finite sequence of natural
numbers, of whatever length, to a different natural number, and a decoding that
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maps every natural number to a different finite sequence of natural numbers:

0 = nil() 7→ ()

1 = cons(0, 0) = cons(0, nil()) 7→ (0)

2 = cons(1, 0) = cons(1, nil()) 7→ (1)

3 = cons(0, 1) = cons(0, cons(0, nil())) 7→ (0, 0)

4 = cons(2, 0) = cons(2, nil()) 7→ (2)

5 = cons(0, 2) = cons(0, cons(1, nil())) 7→ (0, 1)

6 = cons(1, 1) = cons(1, cons(0, nil())) 7→ (1, 0)

7 = cons(0, 3) = cons(0, cons(0, cons(0, nil()))) 7→ (0, 0, 0)

8 = cons(3, 0) = cons(3, nil()) 7→ (3)

9 = cons(0, 4) = cons(0, cons(2, nil())) 7→ (0, 2)

10 = cons(1, 2) = cons(1, cons(1, nil())) 7→ (1, 1)

11 = cons(0, 5) = cons(0, cons(0, cons(1, nil()))) 7→ (0, 0, 1)

12 = cons(2, 1) = cons(2, cons(0, nil())) 7→ (2, 0), etc.

The function nth-cdr applies the cdr function a specified number of times
to a given list (encoded as a natural number) and outputs the result.

Theorem 7.3 The function nth-cdr is primitive recursive.

Proof: Its recursion equations are

nth-cdr(x, 0) = x

= pr0
1(x),

nth-cdr(x, t+ 1) = cdr(nth-cdr(x, t))

= cdr(pr1
3(t, nth-cdr(x, t), x)),

so we can define it thus:

nth-cdr ≡ [g1 pr0
1 [◦13 cdr pr1

3]].

If we “run off the end” of the list by providing an index (second input)
greater than or equal to the length of the list, nth-cdr simply yields the usual
error value, 0.

In fact, we can define the length of the list encoded by x as the least t such
that nth-cdr(x, t) is 0.

Theorem 7.4 The length function is primitive recursive.

Proof: The approach is to use bounded minimization. The number x that
encodes the list can itself be the upper bound for the search, since the length of
a list is always less than or equal to its encoding.

length ≡ [◦21 [µ̄1 [◦12 null? nth-cdr]] pr0
1 pr0

1].
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The indexing selector for lists is list-ref.

Theorem 7.5 The function list-ref is primitive recursive.

Proof: Just take the car of the nth-cdr:

list-ref ≡ [◦12 car nth-cdr].

Iteration

The pattern by which we derived nth-cdr from cdr comes up often enough that
it will be helpful to have a name for it. For any singulary function f , we can
define a binary iterate f̂ by means of the recursion equations

f̂(x, 0) = x,

f̂(x, t+ 1) = f(f̂(x, t)),

which lead to the definition

f̂ ≡ [g1 pr0
1 [◦13 f pr1

3]]

We shall use the notation ‘[}0 f]’ to express the iterate of f defined in this
way. Thus the nth-cdr function is [}0 cdr], and add is [}0 successor].

In fact, we can generalize the pattern still further, to convert any function f
of valence n+ 1 into an iterate f̂ of valence n+ 2, which we’ll express as ‘[}n

f]’:

f̂(x0, . . . , xn, 0) = xn,

f̂(x0, . . . , xn, t+ 1) = f(x0, . . . , xn−1, f̂(x0, . . . , xn, t)),

Theorem 7.6 The iterate f̂ of any primitive recursive function f is primitive
recursive.

Proof:

[}n f] ≡ [gn+1 prnn+1 [◦n+1
n+3 f pr2

n+3 ... prn+1
n+3 pr1

n+3]].
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Strings

As another example of encoding, we can extend the notion of primitive recursive
functions to functions that take strings on some finite alphabet as inputs and
output such strings as values. The idea is to associate each symbol in the
alphabet with a positive integer that acts as its serial number and then to treat
strings as numerals in an appropriate “positional” system of numeration. The
encoding of a string will then be the number that it denotes in such a system.

Suppose that the number of symbols in the alphabet is n. We’ll let the serial
numbers for the symbols, then, be 1, 2, 3, . . . , n. We can define the encoding for
a given string recursively:

• The encoding for the null string, ε, is 0.

• For any string x and any symbol a from the alphabet, the encoding of xa
is the sum of a’s serial number and n times the encoding of x.

So, for instance, if the alphabet is {a, b}, let’s give a the serial number 1 and
b the serial number 2. Then, since in this case n = 2, the encoding for abbab

would be
2 · (2 · (2 · (2 · (2 · 0 + 1) + 2) + 2) + 1) + 2,

or 44.
This technique has the convenient feature that ascending numerical order

among the encodings of strings corresponds exactly to a fairly natural order
among the strings: shorter strings precede longer ones, and strings of equal
length are ordered lexicographically.

Since the particular encoding used for strings depends on the size n of the
alphabet, our string-related functions take n as an additional input throughout.
By convention, we shall put this size-of-alphabet input first.

Truncation

The truncate function strips away the rightmost symbol of any non-empty
string. More precisely: given the encoding s̄ of a non-empty string s and the
number of symbols in the alphabet used, truncate outputs the encoded result
of removing the rightmost symbol. (Thus the inputs to truncate, as well as
the value it outputs, are natural numbers.)

Theorem 7.7 Truncation is a primitive recursive function.

Proof:
truncate(n, s̄) = quotient(predecessor(s̄), n),

so that

truncate ≡ [◦22 quotient [◦12 predecessor pr1
2] pr0

2].
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String Length

Theorem 7.8 The function string-length is primitive recursive.

Proof: We can compute the length of a string as the number of times it can
be truncated before becoming null.

string-length ≡ [◦32 [µ̄2 [◦13 zero? [}1 truncate]]] pr0
2 pr1

2 pr1
2].

Note that string-length takes two inputs: the alphabet size and the en-
coded string. The encoding for the string itself serves as the upper bound on
the number of truncation steps that will be required (which is why the second
input is projected out twice, to serve as both the second and third inputs to the
bounded minimization). This definition therefore presupposes a property of the
encoding: The length of any string must be less than or equal to its encoding.

String Indexing

We will need a string-ref function that extracts the encoding for a symbol at
a given (zero-based) position in a string from the encoding for the string itself.

Theorem 7.9 The function string-ref is primitive recursive.

Proof: We truncate the string until the specified position is at the right end,
then use remainder (or, actually, redniamer) to inspect the rightmost symbol
(correcting a zero remainder to n). First, let’s define the function that extracts
the rightmost symbol of any non-null string:

last-symbol(n, s̄) =

{
n if divides?(n, s̄),
redniamer(n, s̄) otherwise,

so that

last-symbol ≡ [¿2 divides? pr0
2 redniamer]

Here, then, is the string-indexing function string-ref. The first input is the
alphabet size, the second is the string, and the third is the zero-based position
in the string.

string-ref(n, s̄, p)

= last-symbol(n,

[}1 truncate](n, s̄,

subtract(string-length(n, s̄), successor(p)))),

so that
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string-ref ≡ [◦23 last-symbol

pr0
3

[◦33 [}1 truncate]

pr0
3

pr1
3

[◦23 subtract

[◦23 string-length pr0
3 pr1

3]

[◦13 successor pr2
3]]]].

Concatenation

Theorem 7.10 String concatenation is a primitive recursive function.

Proof: To concatenate two strings, we can “scale up” the first one by a power
of the size of the alphabet and simply add the second one to the result. The
exponent on the scale factor is the length of the second string.

concatenate(n, s̄0, s̄1) = s̄0 · nm + s̄1,

where m = string-length(n, s̄1).

Hence

concatenate ≡ [◦23 add

[◦23 multiply

pr1
3

[◦23 raise-to-power

pr0
3

[◦23 string-length pr0
3 pr2

3]]]

pr2
3].

Since the encoding for a single symbol is equal to the encoding for the string
containing just that symbol, either or both of the last two inputs to concatenate

can be understood in either way.

Selecting Substrings

Instead of a single symbol, we can select any substring of a given string by
providing the position at which the substring begins and the position just before
which it ends.

Theorem 7.11 The function substring is primitive recursive.
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Proof: We use recursion equations to define the ss function, which also
extracts substrings, but has a slightly different interface. Its first input is the
size of the alphabet, as usual; its second is the encoded string, s̄; its third is the
zero-based position at which the substring begins; but its fourth input is the
length of the substring to be extracted.

Selecting any zero-length substring yields ε (in its encoded form, 0), and
selecting a substring of length t+ 1 yields the result of concatenating the corre-
sponding substring of length t with the symbol at the next following position. If
there is no such symbol, we concatenate nothing and simply output the shorter
substring. So:

ss(n, s̄, p, 0) = 0,

ss(n, s̄, p, t+ 1) =


concatenate(n, ss(n, s̄, p, t),

string-ref(n, s̄, p+ t))
if p+ t < string-length(n, s̄),

ss(n, s̄, p, t) otherwise.

The definition of ss as a primitive recursive function, then, is

ss ≡ [g3 zero3

[¿5 [◦25 less-than

[◦25 add pr4
5 pr0

5]

[◦25 string-length pr2
5 pr3

5]]

[◦35 concatenate

pr2
5

pr1
5

[◦35 string-ref pr2
5 pr3

5 [◦25 add pr4
5 pr0

5]]]

pr1
5]]

The more Scheme-like substring function, taking the position just before
which the substring ends as its fourth input instead of the length of the substring,
can be defined in terms of ss:

substring(n, s̄, p, e) = ss(n, s̄, p, e . p),

so that

substring ≡ [◦44 ss pr0
4 pr1

4 pr2
4 [◦24 subtract pr3

4 pr2
4]].

String Update

The string-update function inserts a new symbol into a given string at a given
position, replacing the symbol that previously occupied that position.
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Theorem 7.12 The function string-update is primitive recursive.

Proof: We concatenate the part of the string that precedes the given position,
the new symbol, and the part of the string that follows the given position.

string-update(n, s̄, p, ā) = concatenate(n,

substring(n, s̄, 0, p),

concatenate(n, ā,

substring(n, s̄, p+ 1,

string-length(n, s̄)))),

so that

string-update ≡ [◦34 concatenate

pr0
4

[◦44 substring pr0
4 pr1

4 zero4 pr2
4]

[◦34 concatenate

pr0
4

pr3
4

[◦44 substring

pr0
4

pr1
4

[◦14 successor pr2
4]

[◦24 string-length pr0
4 pr1

4]]]]

Since substring outputs an empty string if the specified starting position
is greater than or equal to the specified ending position, the string-update

function can also be used to add a symbol at the end of a string. One need only
specify an update position that is greater than or equal to the length of s.

Exercises

7–1 Define a singulary, primitive recursive function exch that takes the en-
coding for a pair (x0, x1) as its input and outputs the encoding for a similar pair
(x1, x0) with car and cdr reversed. (Since 0 is not the encoding for any pair,
you may arrange for exch(0) to be any value that happens to be convenient.)

7–2 In your favorite programming language, write and test procedures that
implement the encoding and decoding methods for lists of natural numbers.

7–3 What happens if the second input to list-ref is greater than or equal
to the length of the list that the first input encodes?

7–4 Describe the function [}0 double], explaining how its output is related
to its input.
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7–5 The reverse-list function inputs the encoding for a list and outputs
the encoding for a list with the same elements, arranged in the opposite order.
Prove that reverse-list is primitive recursive.

7–6 Using iteration, define a ternary, primitive recursive function repl that
takes the size of an alphabet, the encoding for a string on that alphabet, and
a natural number used as a repetition factor as its inputs and outputs the
encoding for a string consisting of that many repetitions of the given string.
(For instance, since the encoding for the string abbac on the alphabet {a, b, c}
is 159, repl(3, 159, 4) is 2290903800, which encodes abbacabbacabbacabbac.)



Chapter 8

Course-of-Values Recursion

Sometimes it is most convenient to define a function f by means of a recursion
equation in which the value of f(x0, . . . , xn−1, t + 1) depends not only on the
immediately preceding value f(x0, . . . , xn−1, t), but on any or all of the pre-
ceding values f(x0, . . . , xn−1, t), f(x0, . . . , xn−1, t−1), . . . , f(x0, . . . , xn−1, 0). A
definition of this kind is called a course-of-values recursion.

For instance, the Catalan sequence is a sequence C0, C1, . . . of natural num-
bers specified by the equations

C0 = 1,

Cn+1 =

n∑
k=0

CkCn−k.

Let’s compute the first few values of a function catalan that inputs a natural
number and outputs the corresponding term of the sequence, just to get a feel
for how the preceding values are used:

catalan(0) = 1,

catalan(1) = catalan(0) · catalan(0)

= 1 · 1
= 1,

catalan(2) = catalan(0) · catalan(1) +

catalan(1) · catalan(0)

= 1 · 1 + 1 · 1
= 1 + 1

= 2,

catalan(3) = catalan(0) · catalan(2) +

catalan(1) · catalan(1) +

catalan(2) · catalan(0)
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= 1 · 2 + 1 · 1 + 2 · 1
= 2 + 1 + 2

= 5,

catalan(4) = catalan(0) · catalan(3) +

catalan(1) · catalan(2) +

catalan(2) · catalan(1) +

catalan(3) · catalan(0)

= 1 · 5 + 1 · 2 + 2 · 1 + 5 · 1
= 5 + 2 + 2 + 5

= 14,

catalan(5) = catalan(0) · catalan(4) +

catalan(1) · catalan(3) +

catalan(2) · catalan(2) +

catalan(3) · catalan(1) +

catalan(4) · catalan(0)

= 1 · 14 + 1 · 5 + 2 · 2 + 5 · 1 + 14 · 1
= 14 + 5 + 4 + 5 + 14

= 42.

Such course-of-values recursions don’t follow the function-building pattern
that gn encapsulates, since in that pattern only the immediately preceding
value of the function being defined can be recovered from the inputs to the
function that helps define it. Are functions like catalan nevertheless primitive
recursive? If so, how can we use composition and recursion to construct them?

Suppose that we’re trying to define a function f of positive valence n+ 1 by
course-of-values recursion. What would we need in order to be in a position to
define f directly, without relying on the gn operation? We’d have to receive all
the preceding values of f as inputs somehow, so that the computation of the
new value could use them. In fact, just one additional input would be enough, if
that input were a list of all of the preceding values of f . We could use list-ref

to select any values that we needed from that list.
If we knew that f itself was primitive recursive, we could define a function

f̃ that takes the same inputs as f , but outputs the encoding for a list of all
the “preceding values” of f (arranged by the value of the last input to f , in
descending order). The following recursion equations specify f̃ in terms of f :

f̃(x0, . . . , xn−1, 0) = nil(),

f̃(x0, . . . , xn−1, t+ 1) = cons(f(x0, . . . , xn−1, t), f̃(x0, . . . , xn−1, t)).

If we could somehow show independently that f̃ is primitive recursive, we
could use it to define f . After all, the whole problem is that f needs access to
some or all of its own preceding values, which is exactly what f̃ provides. We
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can imagine the helper function fh, just like f except that it has one additional
input, the list of preceding values, as f̃ constructs it:

f(x0, . . . , xn−1, t) = fh(x0, . . . , xn−1, t, f̃(x0, . . . , xn−1, t)).

This equation would be a recipe for definition f as a composition of fh and f̃ if
only we knew that f̃ was primitive recursive.

The course-of-values recursion equations for a function like catalan can tell
us how to define fh as a primitive recursive function, but that doesn’t resolve
the basic circularity. Even if fh is primitive recursive, we still seem to need f
in the definition of f̃ and f̃ in the definition of f .

Just to illustrate our predicament, let’s see what the definitions of fh (which
we’ll call catalan-helper), f̃ (catalan-list), and f itself (catalan) would
look like in our notation.

First, let’s get clear on what the catalan-helper function is supposed to
do. When its inputs are n and the encoding of the list containing Cn−1, Cn−2,
. . . , C1, and C0, catalan-helper should output Cn. Apart from the special
case in which n = 0, for which the output 1 is specified by the first of the course-
of-values recursion equations, we’ll compute the output as a bounded sum of
products of values extracted from the list.

To extract Ck from the list (where k < n), we apply list-ref to the en-
coding for the list and the correct zero-based position, which works out to be
position n− 1− k. (If this seems backwards, recall that the preceding values in
the sequence are listed in descending order, so that Cn−1 is in position 0, at the
beginning of the list, and C0 is at the end, in position n− 1.)

To compute each product CkCn−k, we’ll need n as well as the encoding for
the list and the summation variable k. The function catalan-core receives
these three quantities as inputs and outputs the desired product:

catalan-core ≡ [◦23 multiply

[◦23 list-ref pr1
3

[◦23 subtract [◦13 predecessor pr0
3]

pr2
3]]

[◦23 list-ref pr1
3 [◦13 predecessor pr2

3]]]

Then catalan-helper computes a bounded sum of values of catalan-core,
providing three inputs to the summation function: n, the encoding of the list
of previous values, and (as the inclusive upper bound for the summation) the
predecessor of n:

catalan-helper ≡ [¿2 [◦12 zero? pr0
2]

one2

[◦32 [Σ̄2 catalan-core] pr0
2

pr1
2

[◦12 predecessor pr0
2]]]

The catalan-list function is a list construction, using catalan to generate
each element:
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catalan-list “≡” [g0 nil [◦22 cons [◦12 catalan pr0
2] pr1

2]]

and catalan itself is a composition of catalan-helper and catalan-list:

catalan “≡” [◦21 catalan-helper pr0
1 catalan-list]

But these last two aren’t really definitions, because they would be circular:
catalan-list depends on catalan, and catalan depends on catalan-list.
(I’ve placed the ≡ symbol in sarcastic quotation marks in these non-definitions
as a reminder that it would be pointless to rely on them.) If either of these
functions is primitive recursive, so is the other, but so far we haven’t proven
that either of them is primitive recursive.

Note, however, that the definitions of catalan-core and catalan-helper

do not share this circularity and are, in fact, completely sound. Those construc-
tions prove that catalan-core and, therefore, catalan-helper are primitive
recursive functions.

The key to resolving the mutual dependence of catalan and catalan-list

is to use pairs to define them jointly. Instead of regarding them as two functions,
one that outputs natural numbers and another that outputs list encodings, let’s
merge them into a single function, catalan-pair, that outputs encodings for
pairs. On input n, catalan-pair will output the encoding for a pair that has
the natural number that we would like catalan to output as its car and the list
encoding that we would like catalan-list to output as its cdr.

As it turns out, it’s surprisingly easy to define catalan-pair as a direct
simple recursion. We can start from the recursion equations:

catalan-pair(0) = cons(catalan-helper(0, nil), nil),

catalan-pair(t+ 1) = cons(catalan-helper(t+ 1, catalan-pair(t)),

catalan-pair(t)).

The second of these equations relies on a sort of pun based on the dual role of
cons, as a function that couples two values to form a pair and as a function
that prepends a value to a list to form a list. We can think of each output from
catalan-pair either as a pair of two values, catalan(n) and catalan-list(n),
or as a list of values comprising catalan(n), catalan(n− 1), . . . , catalan(0).
The catalan-pair function in effect prepends a new element to this list at each
step.

In our notation, then, we can define catalan-pair thus:

catalan-pair ≡ [g0 [◦20 cons [◦20 catalan-helper zero nil] nil]

[◦22 cons [◦22 catalan-helper [◦12 successor pr0
2]

pr1
2]

pr1
2]]

The definitions of catalan and (incidentally at this point) catalan-list

follow at once:

catalan ≡ [◦11 car catalan-pair]

catalan-list ≡ [◦11 cdr catalan-pair]
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Now we can line the definitions up in sequence—catalan-core, catalan-
helper, catalan-pair, catalan—so that each relies only on the definitions
that precede it. We have therefore proven, by construction,

Theorem 8.1 The function catalan is primitive recursive.

More generally, we begin with a helper function fh that expresses the way
in which f depends on the previous values that f̃ accumulates. Then we use fh
and ordinary recursion to define a function f̈ that computes f and f̃ in parallel,
in the following sense: Given any inputs, f̈ returns a pair in which the car is
the result of applying f to those inputs and the cdr is the result of applying f̃
to them. In other words, the goal is to define f̈ by direct recursion in such a
way that

f̈(x0, . . . , xn) = cons(f(x0, . . . , xn), f̃(x0, . . . , xn)).

We will now show that, whenever we have a helper function fh that relates f
and f̃ in the way described above, we can define f̈ in terms of fh, and f̈ will be
primitive recursive whenever fh is.

First, let’s set up the general recursion equations for f̈ , making the role of
fh clear.

f̈(x0, . . . , xn−1, 0) = cons(f(x0, . . . , xn−1, 0), f̃(x0, . . . , xn−1, 0))

= cons(fh(x0, . . . , xn−1, 0, 0), 0)

= cons(fh(x0, . . . , xn−1, 0, niln(x0, . . . , xn−1)),

niln(x0, . . . , xn−1)),

f̈(x0, . . . , xn−1, t+ 1) = cons(f(x0, . . . , xn−1, t+ 1),

f̃(x0, . . . , xn−1, t+ 1))

= cons(fh(x0, . . . , xn−1, t+ 1,

cons(f(x0, . . . , xn−1, t), f̃(x0, . . . , xn−1, t))),

cons(f(x0, . . . , xn−1, t), f̃(x0, . . . , xn−1, t)))

= cons(fh(x0, . . . , xn−1, t+ 1, f̈(x0, . . . , xn−1, t)),

f̈(x0, . . . , xn−1, t)).

So, in our notation, we can define f̈ by direct recursion, using fh to generate
each new value of the underlying function f as needed:
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f̈ ≡ [gn [◦2n cons

[◦n+2
n fh pr0

n ... prn−1
n zeron niln]

niln]

[◦2n+2 cons

[◦n+2
n+2 fh

pr2
n+2

...

prn+1
n+2

[◦1n+2 successor pr0
n+2]

pr1
n+2]

pr1
n+2]].

We can then define the desired function f from f̈ :

f ≡ [◦1n+1 car f̈].

When a function f of valence n + 1 is derived in this way from another
function fh (by way of f̈), we’ll write it as ‘[g̃n fh]’.

Theorem 8.2 For any primitive recursive function fh, [g̃n fh] is a primitive
recursive function.

Proof: We simply combine the constructions already given:

[g̃n fh] ≡ [◦1n+1 car [gn [◦2n cons

[◦n+2
n fh pr0

n ... prn−1
n zeron niln]

niln]

[◦2n+2 cons

[◦n+2
n+2 fh

pr2
n+2

...

prn+1
n+2

[◦1n+2 successor pr0
n+2]

pr1
n+2]

pr1
n+2]]].

As another example of how to use course-of-values recursion, let us define a
function decrement-last that takes as its input the encoding of a list of natural
numbers and outputs the encoding for a list that is precisely similar except that
the last element has been reduced by 1. (If the last element in the input list
is 0, the output will be the same as the input; if the input list is empty, the
function will return the encoding for a list containing 0 as its only element.)
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Theorem 8.3 The function decrement-last is primitive recursive.

Proof: The first step is to define a function to play the role of fh; we’ll call
it decrement-last-helper. Recall that the job of such a helper function is to
compute the value that the function we ultimately want to define (in this case,
decrement-last), given the input to that function (in this case, the encoding
for a list) and a list of all of the outputs that that function would compute from
smaller inputs.

If x0 is the encoding for a non-empty list and x1 is a list of “previous outputs”
of decrement-last, (decrement-last(x0 − 1), . . . , decrement-last(0)), then
we can recover decrement-last(cdr(x0)) from x1 by selecting the element that
is followed by cdr(x0) other elements. The zero-based index for that element is
length(x1)− 1− cdr(x0).

decrement-last-helper(x0, x1) = cons(predecessor(car(x0)), nil()) if null?(cdr(x0)),
cons(car(x0), list-ref(x1, length(x1)− 1− cdr(x0)))

otherwise,

or, in our notation,

decrement-last-helper ≡
[¿2 [◦12 null? [◦12 cdr pr0

2]]

[◦22 cons [◦12 predecessor [◦12 car pr0
2]] nil2]

[◦22 cons

[◦12 car pr0
2]

[◦22 list-ref

pr1
2

[◦22 subtract [◦12 predecessor [◦12 length pr1
2]]

[◦12 cdr pr0
2]]]]]

The decrement-last function itself is then defined from its helper:

decrement-last ≡ [g̃0 decrement-last-helper]

Since we’ll often need to select an element from a list of previous values of
a function that is being defined by course-of-values recursion, it will be helpful
to separate out the list-ref-from-end function, which recovers an element of
a list, given its zero-based position from the end of the list:

Theorem 8.4 The function list-ref-from-end is primitive recursive.

Proof:
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list-ref-from-end ≡ [◦22 list-ref

pr0
2

[◦22 subtract

[◦12 predecessor [◦12 length pr0
2]]

pr1
2]]

Using this function clarifies the structure of decrement-last-helper:

decrement-last-helper ≡
[¿2 [◦12 null? [◦12 cdr pr0

2]]

[◦22 cons [◦12 predecessor [◦12 car pr0
2]] nil2]

[◦22 cons

[◦12 car pr0
2]

[◦22 list-ref-from-end pr1
2 [◦12 cdr pr0

2]]]]

Exercises

8–1 Compute C6 by hand.

8–2 Use course-of-values recursion to define the fibonacci function, which
inputs a natural number denoting a (zero-based) position in the Fibonacci se-
quence 0, 1, 1, 2, 3, 5, 8, . . . and outputs the natural number that occupies that
position. The Fibonacci sequence is specified the recursion equations

F0 = 0,

F1 = 1,

Ft+2 = Ft + Ft+1 for every natural number t.

8–3 The Hofstadter G sequence is defined by the recursion equations

G0 = 0,

Gt+1 = t+ 1−GGt
for every natural number t.

Use course-of-values recursion to define the hofstadter-g function, which in-
puts a natural number n and outputs Gn.
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Additional List Functions

Course-of-values recursion makes it straightforward to develop other commonly
used list functions. For example, we can define end-of-list analogues of car,
cdr, and cons:

Theorem 9.1 The functions last, all-but-last, and cons-at-end are all
primitive recursive.

Proof:

last ≡ [g̃0 [¿2 [◦12 null? [◦12 cdr pr0
2]]

[◦12 car pr0
2]

[◦22 list-ref-from-end pr1
2 [◦12 cdr pr0

2]]]]]

all-but-last ≡ [g̃0 [¿2 [◦12 null? [◦12 cdr pr0
2]]

nil2

[◦22 cons

[◦12 car pr0
2]

[◦22 list-ref-from-end

pr1
2

[◦12 cdr pr0
2]]]]]

cons-at-end ≡ [g̃1 [¿3 [◦13 null? pr1
3]

[◦23 cons pr0
3 nil3]

[◦23 cons

[◦13 car pr1
3]

[◦23 list-ref-from-end

pr2
3

[◦13 cdr pr1
3]]]]]
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From the last example, it is straightforward to abstract the general pattern
of direct list recursion. We’ll denote this pattern by [~gn f g], where n is the
number of “fixed” inputs that precede the last one (which is interpreted as the
encoding for a list), f is a function that applies to the fixed inputs to generate
the output in the base case (where the list is empty), and g is a function that
applies to the fixed inputs, the car of the list (when it is not empty), and the
recursive result for the cdr of the list to generate the output in any of the
non-base cases.

Theorem 9.2 For any primitive recursive functions f of valence n and g of
valence n+ 2, [~gn f g] is primitive recursive.

Proof:

[~gn f g] ≡ [g̃n [¿n+2 [◦1n+2 null? prnn+2]

[◦nn+2 f pr0
n+2 ... prn−1

n+2]

[◦n+2
n+2 g

pr0
n+2

...

prn−1
n+2

[◦1n+2 car prnn+2]

[◦2n+2 list-ref-from-end

prn+1
n+2

[◦1n+2 cdr prnn+2]]]]]

For instance, [~g0 zero add] is a function that determines the sum of the
elements of a given list.

Here are two additional patterns that often come in handy. Given a function
f of valence n+ 1, we can define a similar function [~◦n f] (read “map f”) that
takes the encoding for a list L as its last input and outputs a list of values that
f outputs as it receives the elements of L (with the other inputs held constant).

Theorem 9.3 For every primitive recursive function f of valence n + 1, [~◦n
f] is a primitive recursive function.

Proof:

[~◦n f] ≡ [~gn niln [◦2n+2 cons [◦n+1
n+2 f pr0

n+2 ... prnn+2] prn+1
n+2]]



47

Given a function p of valence n + 1, [~∧n p] (read “all p”) is a predicate
that takes the encoding for a list L as its last input and determines whether
p outputs a truish value for every element of L (with the other inputs held
constant), outputting 1 if so and 0 if not.

Theorem 9.4 For every primitive recursive predicate p of valence n + 1, [~∧n
p] is a primitive recursive function.

Proof:

[~∧n p] ≡ [~gn onen [◦2n+2 and [◦n+1
n+2 p pr0

n+2 ... prnn+2] prn+1
n+2]]

Exercises

9–1 Define the list-product function, which inputs the encoding for a list
and outputs the product of its elements (or 1, if the list is empty).

9–2 Prove that the function list-max, which inputs the encoding for a list and
outputs the greatest element in that list (or 0, if the list is empty), is primitive
recursive. (Hint: First define max, which takes two inputs and outputs the
greater one.)

9–3 Define a list-generation operator ~?n such that, for any function f of
valence n+ 1 and any natural numbers x0, . . . , xn, [~?n f](x0, . . . , xn−1, xn) is
the encoding of the list

(f(x0, . . . , xn−1, 0), f(x0, . . . , xn−1, 1), . . . , f(x0, . . . , xn−1, xn − 1)).

Show that, if f is primitive recursive, so is [~?n f].
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Chapter 10

Partial Functions

We now extend the concept of a function to include the kind of mathematical
entity that maps every tuple in its domain to at most one member of its range.
Such an entity is called a partial function, and is said to be undefined at any
input that it does not map to anything. We shall write ‘f(x0, . . . , xn−1) ↑’ to
indicate that the partial function f is undefined at (x0, . . . , xn−1). Similarly,
we shall write ‘f(x0, . . . , xn−1) ↓’ to indicate that f is defined at (x0, . . . , xn−1),
without indicating what value f maps that input to.

Primitive recursive functions are all total functions, defined for all inputs.
The set of all total functions is a proper subset of the set of all partial functions.

Composition and Recursion of Partial Functions

To extend the operations of composition and recursion to partial functions,
we must provide for the possibility of encountering undefinedness at some point
during the application of the higher-order operation. We shall follow the natural
convention that if we encounter undefinedness at any point, the function that
we are constructing is undefined for the given inputs.

Specifically, in the composition equation

h(x0, . . . , xn−1) = f(g0(x0, . . . , xn−1), . . . , gm−1(x0, . . . , xn−1)),

we might find that one or more of the “inner” functions g0, . . . , gm−1 is undefined
at the input (x0, . . . , xn−1), and in any such case we shall stipulate that h is also
undefined at that input. Moreover, even if all of the inner functions yield values
y0 = g0(x0, . . . , xn−1), . . . , ym−1 = gm−1(x0, . . . , xn−1), we might find that f is
undefined at the input (y0, . . . ym−1). In that case, too, we stipulate that h is
undefined at (x0, . . . , xn−1).

Similarly, in the recursion equations

h(x0, . . . , xn−1, 0) = f(x0, . . . , xn−1),

h(x0, . . . , xn−1, t+ 1) = g(t, h(x0, . . . , xn−1, t), x0, . . . , xn−1),

49
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we might discover that f(x0, . . . , xn−1) ↑; if so, then h(x0, . . . , xn−1, 0) ↑. And
likewise if, for some natural number t, we find either that h(x0, . . . , xn−1, t) ↑ or
that h(x0, . . . , xn−1, t) = y and g(t, y, x0, . . . , xn−1) ↑, then h(x0, . . . , xn−1, t+1)
is also undefined.

Without changing their definitions, we will extend all of our other “higher-
order” operations (¿n, ∀̄n, Σ̄n, µ̄n, }n, ~gn, ~◦n, and ~∧n), so that they too become
ways of defining partial functions in terms of other partial functions.

Unbounded Minimization

Of course, it would be idle to extend composition and recursion to partial func-
tions if we stayed within the class of primitive recursive functions. To go beyond
that class, we shall now adopt a third elementary mechanism for constructing
new functions from our primitives: The unbounded minimization of an (n+ 1)-
ary function p is an n-ary function µp. Given the n-tuple (x0, . . . , xn−1), µp
outputs the least natural number t such that p(x0, . . . , xn−1, t) > 0.

Thus the general equation defining an unbounded minimization is

µp(x0, . . . , xn−1) = min
t∈N

(p(x0, . . . , xn−1, t) > 0) .

We shall write ‘[µn p]’ to denote µp in our constructions.
Since the range of t is unbounded, it is natural to ask what happens if

there is no natural number t such that p(x0, . . . , xn−1, t) > 0. In that case,
µp(x0, . . . , xn−1) ↑. The unbounded minimization of a function may be unde-
fined for certain inputs even if the function itself is total. For example, we could
define “true” subtraction, the exact inverse of addition, like this:

minus(x0, x1) = min
t∈N

(x0 = x1 + t) ,

or, in our official notation,

minus ≡ [µ2 [◦23 equal? pr0
3 [◦23 add pr1

3 pr2
3]]].

Whenever x0 ≥ x1, it turns out that minus(x0, x1) = subtract(x0, x1); but
when x0 < x1, subtract(x0, x1) = 0, while minus(x0, x1) ↑.

For every natural number n, there is an extreme partial function of valence
n that is undefined throughout its domain. I don’t know of a standard name
for these functions, so I propose to use the name mist for the nullary version,
defined by

mist ≡ [µ0 zero1],

and, in accordance with an earlier convention, ‘mistn’ as shorthand for ‘[◦0n
mist]’, which denotes the everywhere-undefined function of valence n.

Functions that can be constructed from our primitives (zero, successor,
and the prmn functions) using composition, recursion, and unbounded mini-
mization are called partial recursive functions. Naturally, all primitive recursive
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functions are also partial recursive, since they can be defined from the primitives
using composition and recursion. Moreover, the higher-order operations ¿n, ∀̄n,
Σ̄n, µ̄n, }n, ~gn, ~◦n, and ~∧n, operating on partial recursive functions, construct
partial recursive functions. (The proofs are identical to the corresponding proofs
for primitive recursive functions, even though the meanings of the constructions
are now somewhat different.)

Exercises

10–1 The partial function exactly-halve is singulary. If its input is even,
exactly-halve outputs the result of dividing the input by 2. If the input is
odd, exactly-halve does not output anything; the function is undefined for
odd inputs, since they cannot be exactly halved. Prove that exactly-halve is
partial recursive.

10–2 One might be tempted to define the exactly-halve function in the
previous exercise as

[¿1 even? [◦21 quotient pr0
1 two1] mist1]

However, this construction expresses a partial function that is everywhere un-
defined (in other words, it’s mist1 under another name). Explain why.

10–3 Show that, for every primitive recursive function f , there is a partial
recursive function f ′ such that f ′(x0, . . . , xn−1) ↑ if f(x0, . . . , xn−1) = 0, and
f ′(x0, . . . , xn−1) = f(x0, . . . , xn−1) otherwise.
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Chapter 11

Encoding Partial Recursive
Functions

Since we’ve seen data values of a variety of types encoded as natural numbers,
it is natural to wonder whether functions themselves might be so encoded. Un-
fortunately, no such encoding exists for functions generally. Even if we consider
only total, singulary functions, there are just too many of them for each one
to be mapped to a different natural number! The proof (by contradiction) is
entertaining:

Suppose that there were an encoding that mapped every total, singulary
function f to a different natural number f̄ . Then there would also be a total,
binary function e such that

e(x, f̄) = f(x)

for any total, singulary function f and every natural number x. The function
e would exist even if the encoding were not a surjection, that is, even if some
natural numbers did not encode any function, because we could simply stipulate
that e outputs 0 whenever its second input does not encode a function. The
function e would be a universal function, capable of mimicking the behavior of
every total, singulary function, and using its second input to determine which
of those functions to mimic.

But if there were such a function e, then there would also have to be a total,
singulary function e′ such that

e′(x) = e(x, x) + 1.

In effect, e′ takes any natural number, decodes it to get a function, applies that
function to its own encoding, and adds 1 to the output of that function. This
seems like an unusual thing to do, but it’s clear that it would be possible if we
had a way of encoding every function to begin with.

The contradiction appears when we consider that, since e′ is a total, singulary
function, it too will have an encoding ē′, and e will have to take this encoding as
an input; indeed, since ē′ is a natural number, e will have to be able to accept it
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in either input position, or in both. In the special case where both of the inputs
are ē′, the first of the two equations above says that

e(ē′, ē′) = e′(ē′),

while the second says that

e′(ē′) = e(ē′, ē′) + 1.

It follows that e(ē′, ē′) = e(ē′, ē′) + 1, which is impossible.
Thus not all total, singulary functions can be encoded as natural numbers,

nor (obviously) can all total functions of all valences or all partial functions,
since these sets include the total, singulary functions as a subset.

However, it turns out that it is possible to encode and enumerate all partial
recursive functions, by encoding and enumerating their construction recipes—
the very programs that we have been writing to define them and to prove that
they are partial recursive. Let’s review the concept of a partial recursive function
and look at what it would take to encode the programs that define them.

First, there are the primitive functions, beginning with the zero function.
It seems fitting to use the natural number 0 as the encoding for zero.

encode-zero-function ≡ zero

zero-function? ≡ zero?

We’ll need an encoding for the successor function. Again, there is a strik-
ingly obvious choice, namely 1.

encode-successor-function ≡ one

successor-function? ≡ [◦21 equal? pr0
1 one1]

Next, we’ll need encodings for all of the projection functions. There are
infinitely many of these, so if we aren’t careful, we could use up all of our natural
numbers on the projection functions alone. To keep this from happening, let’s
select out an infinite subset of the remaining natural numbers and use just
that subset to represent projection functions. For reasons that will shortly
become obvious, the subset that I’ll choose is {4k + 2 | k ∈ N}—that is, the
subset comprising 2, 6, 10, 14, 18, and so on. The k in this construction can
be our encoding for the pair cons(m,n), where n is the number of inputs to
the projection function and m is the zero-based position of the input that the
projection function passes along as its output. So, for instance, the encoding
for pr0

2 will be 4 · cons(0, 2) + 2, or 22, and the encoding for pr1
3 will be 4 ·

cons(1, 3) + 2, which works out to be 58.

encode-projection-function(m,n) = 4 · cons(m,n) + 2

and so

encode-projection-function ≡ [◦22 add

[◦22 multiply four2 cons]

two2]
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where

three ≡ [◦10 successor two]

four ≡ [◦10 successor three]

Under this approach, the encoding function is not “onto”—there will be
some natural numbers that do not encode any programs. For instance, 2 does
not encode a program, since 2 = 4 · 0 + 2, and 0 does not encode a pair. Nor
does 6 encode a program; 6 = 4 · cons(0, 0) + 2, but there is no such projection
function as pr0

0. (The upper index in a projection must be strictly less than
the lower index.) This is not a problem as long as (a) the encoding function is
one-to-one, and (b) we can use a primitive recursive function to distinguish the
valid encodings from the invalid ones.

In particular, we can still define decoding functions that will recover the
indices m and n from the encoding for prmn :

projection-indices ≡ [◦21 quotient

[◦21 subtract pr0
1 two1]

four1]

upper-projection-index ≡ [◦11 car projection-indices]

lower-projection-index ≡ [◦11 cdr projection-indices]

projection-function? ≡ [◦21 and

[◦21 equal?

[◦21 remainder pr0
1 four1]

two1]

[◦21 less?

upper-projection-index

lower-projection-index]]

The inputs to selector functions for the projection indices can be any natural
numbers, regardless of whether or not they are valid encodings for projection
functions. Since the selectors are primitive recursive functions, they output
numerical results regardless. However, those results are of no interest to us, and
we shall ensure that none of the functions that we define subsequently depends
on them.

Now let us consider the three mechanisms for constructing partial recursive
functions from the primitives: composition, recursion, and unbounded mini-
mization. Each of these three mechanisms can be applied to infinitely many
different operands, so again we’ll need to take care not to use up our encod-
ings for any one of them. Let’s reserve {4k + 3 | k ∈ N} for compositions,
{4k + 4 | k ∈ N} for recursions, and {4k + 5 | k ∈ N} for minimizations. (Now
it is apparent why the multiplier is 4: we need four different infinite sets of
encodings for projections, compositions, recursions, and minimizations, so we
set up four different residue classes to represent them.)

When encoding a composition as 4k+ 3, the k can be the encoding for a list
in which the initial element is the upper index (the valence m of the “outer”
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function f in the composition), the next element is the lower index (the valence
n of the “inner” functions g0, . . . , gm−1), and the remaining elements are the
encodings of f, g0, . . . , gm−1 themselves, which I’ll call the components of the
composition. So, for instance, the encoding for [◦13 successor pr1

3] will be
4 · cons(1, cons(3, cons(1, cons(58, nil())))) + 3, or 295147905179352826507.

In our encoder for functions defined by composition, which we’ll call encode-
composition, we’ll assume that the components have already been assembled
into a list, so that there will always be exactly three inputs—m, n, and the
encoding c for the list of components:

encode-composition(m,n, c) = 4 · cons(m, cons(n, c)) + 3,

encode-composition ≡ [◦23 add

[◦23 multiply

four3

[◦23 cons pr0
3 [◦23 cons pr1

3 pr2
3]]]

three3]

composition-parameters ≡ [◦21 quotient

[◦21 subtract pr0
1 three1]

four1]

upper-composition-index ≡ [◦11 car composition-parameters]

lower-composition-index ≡ [◦11 car [◦11 cdr composition-parameters]]

components ≡ [◦11 cdr [◦11 cdr composition-parameters]]

composition-function? ≡ [◦21 and

[◦21 equal?

[◦21 remainder pr0
1 four1]

three1]

[◦21 greater-or-equal?

[◦11 length composition-parameters]

three1]]

Similarly, when encoding a recursion as 4k + 4, k can be the encoding of
a three-element list in which the initial element is the subscript indicating the
number of fixed inputs to the recursion and the other two elements are the
encodings for the base function f and the step function g. So, for instance,
the encoding for our predecessor function, defined as [g0 zero pr0

2], will be
4 · cons(0, cons(0, cons(14, nil()))) + 4, or 262160.

encode-recursion(n, f, g) = 4 · cons(n, cons(f, cons(g, nil()))) + 4,
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encode-recursion ≡
[◦23 add

[◦23 multiply

four3

[◦23 cons pr0
3 [◦23 cons pr1

3 [◦23 cons pr2
3 [◦03 nil]]]]]

four3]

recursion-parameters ≡ [◦21 quotient [◦21 subtract pr0
1 four1] four1]

recursion-index ≡ [◦11 car recursion-parameters]

base-operand ≡ [◦11 car [◦11 cdr recursion-parameters]]

step-operand ≡ [◦11 car [◦11 cdr [◦11 cdr recursion-parameters]]]

recursion-function? ≡ [◦21 and

[◦21 and

[◦21 divides? four1 pr0
1]

[◦21 greater-or-equal? pr0
1 four1]]

[◦21 equal?

[◦11 length recursion-parameters]

three1]]

Finally, when encoding a minimization as 4k+ 5, k can be the encoding of a
pair in which the car is the valence of the function we are defining and the cdr
is the encoding for the function to which the minimization operation is being
applied. For instance, the encoding for mist, which is defined as [µ0 zero1],
will be 4 · cons(0, 55) + 5, or 449 (since 55 is the encoding for zero1, that is, for
[◦01 zero]).

encode-minimization(n, p) = 4 · cons(n, p) + 5,

so that

five ≡ [◦10 successor four]

encode-minimization ≡ [◦22 add [◦22 multiply four2 cons] five2]

min-parameters ≡ [◦21 quotient [◦21 subtract pr0
1 five1] four1]

minimization-index ≡ [◦11 car min-parameters]

minimization-predicate ≡ [◦11 cdr min-parameters]

minimization-function? ≡ [◦21 and

[◦21 and

[◦21 equal?

[◦21 remainder pr0
1 four1]

one1]

[◦21 greater-or-equal? pr0
1 five1]]

[◦11 positive? min-parameters]]

It is possible to determine the encoding for any of the partial recursive
functions that we have defined, then, by performing elementary arithmetic op-
erations that can be expressed as primitive recursive functions.
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From the encoding for any function, we can recover its valence:

valence ≡ [¿1 zero-function?

zero1

[¿1 successor-function?

one1

[¿1 projection-function?

lower-projection-index

[¿1 composition-function?

lower-composition-index

[¿1 recursion-function?

[◦11 successor recursion-index]

[¿1 minimization-function?

minimization-index

zero1]]]]]]

The final zero1 supplies the default error value when valence receives an input
that does not encode a function.

Now that we have the valence function, we can tighten up the last three
classification predicates, which are not yet doing the complete job of validat-
ing their inputs as correct function encodings. Specifically, we can now add
three new conditions to composition-function?: (a) that the length of the
list of components is one greater than the upper composition index, (b) that
the valence of the first component is equal to the upper composition index,
and (c) that the valences of all of the other components are equal to the lower
composition index:

checked-composition-function? ≡
[◦21 and

composition-function?

[◦21 and

[◦21 equal?

[◦11 length components]

[◦11 successor upper-composition-index]]

[◦21 and

[◦21 equal?

[◦11 valence [◦11 car components]]

upper-composition-index]

[◦21 [~∧1 [◦21 equal? pr0
2 [◦12 valence pr1

2]]]

lower-composition-index

[◦11 cdr components]]]]]

Similarly, we can add to recursion-function? the conditions that the va-
lence of the base operand is equal to the recursion index, and that the valence
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of the step operand is two greater than the recursion index:

checked-recursion-function? ≡
[◦21 and

recursion-function?

[◦21 and

[◦21 equal?

[◦11 valence base-function]

recursion-index]

[◦21 equal?

[◦11 valence step-function]

[◦21 add recursion-index two1]]]]

And we can add to minimization-function? the condition that the valence
of the minimization predicate is one greater than the minimization index.

checked-minimization-function? ≡
[◦21 and

minimization-function?

[◦21 equal?

[◦11 valence minimization-predicate]

[◦11 successor minimization-index]]]

The singulary function called function?, then, does all of the necessary
tests to confirm that its input correctly encodes a partial recursive function: It
confirms that the encoding satisfies one of the classification predicates developed
above, including the valence checks, and moreover, using course-of-values recur-
sion, it confirms (what the previous classification predicates took for granted)
that the components of a composition function, the base and step operands of a
recursion function, and the minimization predicate of a minimization function
are themselves partial recursive functions.
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function? ≡
[g̃0 [◦22 or

[◦12 zero-function? pr0
2]

[◦22 or

[◦12 successor-function? pr0
2]

[◦22 or

[◦12 projection-function? pr0
2]

[◦22 or

[◦22 and

[◦12 checked-composition-function? pr0
2]

[◦22 [~∧1 list-ref-from-end]

pr1
2

[◦12 components pr0
2]]]]

[◦22 or

[◦22 and

[◦12 checked-recursion-function? pr0
2]

[◦22 and

[◦22 list-ref-from-end

pr1
2

[◦12 base-function pr0
2]]

[◦22 list-ref-from-end

pr1
2

[◦12 step-function pr0
2]]]]]

[◦22 and

[◦12 checked-minimization-function?

pr0
2]

[◦22 list-ref-from-end

pr1
2

[◦12 minimization-predicate

pr0
2]]]]]]]

Exercises

11–1 It is not quite accurate to say that the encoding system presented in this
section gives a unique encoding for every partial recursive function, since the
same partial recursive function can be computed in various ways, using different
programs. Each program receives a unique encoding, but various programs that
compute the same function have different encodings.

Since the relationship between the partial recursive functions and the natural
numbers that encode them is not one-to-one, how do we know that every partial
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recursive function has at least one encoding?

11–2 Compute the encoding for the add function. You may use a computer
to help with the calculation.

11–3 Define a primitive recursive function code-size that inputs the en-
coding for a program that computes a partial recursive function and outputs
a measure of the complexity of that program, counting 1 for each reference to
a primitive function, 1 plus the sum of the code-sizes of all of the component
functions in a composition, 1 plus the sum of the code-sizes of the base and step
functions in a recursion, and 1 plus the code-size of the operand predicate in an
unbounded minimization.
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Chapter 12

Computations

Now that we have a method for encoding programs that express the partial
recursive functions, we can also work up a system for encoding the computation
that one would perform in order to work out the result of applying a partial
recursive function to specific inputs—provided that there is such a result, i.e.,
that the function is defined for those inputs.

We’ll represent a computation as a data structure with four components:
the encoding of some program for the function that is being applied, the en-
coding for the list of inputs to which it is being applied, the output resulting
from the computation, and the encoding for a list of subcomputations—other
applications of functions to inputs whose values must be computed as part of
the main computation. When the function that is being applied is a primitive
(zero, successor, or a projection function), the list of subcomputations will
be empty. Compositions, recursions, and minimizations, however, always have
subcomputations.

The arrangement of the four components is arbitrary; let’s just make them
the four constituents of a pair of pairs. Here are the selectors for recovering
these components from the natural number that encodes a computation:

program ≡ [◦11 car car]

inputs ≡ [◦11 cdr car]

output ≡ [◦11 car cdr]

subcomputations ≡ [◦11 cdr cdr]

The launch-checks? predicate tests a whether a given input meets the
starting preconditions for a computation: all four components must be present,
the program component must be the encoding for a partial recursive function,
and the length of the list of inputs must be equal to the valence of that function.
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launch-checks? ≡ [◦21 and

positive?

[◦21 and

[◦11 positive? car]

[◦21 and

[◦11 positive? cdr]

[◦21 and

[◦11 function? program]

[◦21 equal?

[◦11 length inputs]

[◦11 valence program]]]]]]

The zero-computation? predicate tests whether its input is the encoding
for a computation in which the function to be applied is zero. It determines
whether (a) the program in the computation is the correct encoding for the zero
function, (b) the output is 0, and (c) the list of subcomputations is null:

zero-computation? ≡ [◦21 and

[◦11 zero-function? program]

[◦21 and

[◦11 zero? output]

[◦11 null? subcomputations]]]

The successor-computation? predicate tests whether its input is the en-
coding for a computation in which the function to be applied is successor. It
checks that (a) the program in the computation is the correct encoding for the
successor function, (b) the output really is the successor of the input, and (c)
the list of subcomputations is null:

successor-computation? ≡
[◦21 and

[◦11 successor-function? program]

[◦21 and

[◦21 equal? [◦11 successor [◦11 car inputs]] output]

[◦11 null? subcomputations]]]

The projection-computation? predicate tests whether its input is the en-
coding for a computation in which the function to be applied is a projection
function. It determines whether (a) the program encodes a projection func-
tion, (b) the output matches the input at the position indicated by the upper
projection index, and (c) the list of subcomputations is null.
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projection-computation? ≡
[◦21 and

[◦21 projection-function? program]

[◦21 and

[◦21 equal?

[◦21 list-ref

inputs

[◦11 upper-projection-index program]]

output]

[◦11 null? subcomputations]]]

The composition-computation? predicate tests whether its input is the
encoding for a computation in which the function to be applied is a composition,
say [◦mn f g0 . . . gm−1]. When such a function is applied to inputs x0 . . . xn−1,
there will be a total of m+ 1 subcomputations, one for each of the components.
In drawing up the list of subcomputations, we will adopt the convention that the
subcomputations are arranged in the same (left-to-right) order as the component
functions.

The composition-computation? predicate, therefore, checks to make sure
that (a) the program in the computation is a composition function, (b) the
length of the list of subcomputations is one greater than the upper composition
index, (c) the programs of the subcomputations are the components of the pro-
gram in the main computation, (d) the inputs for all of the subcomputations
except the first are the same as the inputs in the main computation; (e) the
inputs for the first subcomputation are the outputs from the remaining sub-
computations; and (f) the output of the first subcomputation is the output for
the main computation.

Eventually, it will also be necessary to ensure that each of the subcompu-
tations is itself a valid subcomputation of one of the six types, but we’ll defer
that part of the testing until we assemble the overall computation? predicate,
at which point we can do a single course-of-values recursion to perform that
check on all kinds of subcomputations.
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composition-computation? ≡
[◦21 and

[◦11 composition-function? program]

[◦21 and

[◦21 equal?

[◦11 length subcomputations]

[◦11 successor

[◦11 upper-projection-index program]]]

[◦21 and

[◦21 equal?

[◦11 components program]

[◦11 [~◦0 program] subcomputations]]

[◦21 and

[◦21 [~∧1 equal?]

inputs

[◦11 [~◦0 inputs]

[◦11 cdr subcomputations]]]

[◦21 and

[◦21 equal?

[◦11 inputs [◦11 car subcomputations]]

[◦11 [~◦0 output]

[◦11 cdr subcomputations]]]

[◦21 equal?

output

[◦11 output

[◦11 car subcomputations]]]]]]]]

The recursion-computation? predicate tests whether its input is the en-
coding for a computation in which the function to be applied is a recursion,
say [gn f g]. When the last input to such a function is 0, there will be only
one subcomputation (the application of f to the other inputs); when the last
input is positive, there will be two (the recursive application of [gn f g], with
the last input decremented, and the application of g that post-processes the
output of the recursion). In the latter case, we will adopt the convention that
the application of g is the car of the list of subcomputations and the recursive
application is the car of its cdr.

Thus the recursion-computation? predicate, therefore, has some intricate
work to do. It checks to make sure that (a) the program encodes a recursion
function and (b) the output of the first subcomputation is the output of the
main computation.

It then tests whether the last input is 0. If so, it confirms that (c) the length
of the list of subcomputations is 1, (d) the program of the subcomputation is the
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base operand f of the program of the main computation, and (e) the inputs for
the subcomputation are all but the last of the inputs for the main computation.

On the other hand, if the last input to the main computation is positive, the
predicate confirms that (f) the length of the list of subcomputations is 2, (g) the
program of the second subcomputation (the recursive one) is the same as the
program in the main computation, (h) the inputs for the second subcomputation
are the same as the inputs for the main computation, except that the last input
has been decremented by 1, (i) the program of the first subcomputation is the
step operand g of the program in the main computation, and (j) the inputs
for the first subcomputation are, first, the predecessor of the last input of the
main computation, then the output from the second subcomputation (i.e., the
recursive result), then the rest of the inputs of the main computation.

recursion-computation? ≡
[◦21 and

[◦11 recursion-function? program]

[◦21 and

[◦21 equal?

output

[◦11 output [◦11 car subcomputations]]]

[¿1 [◦11 zero? [◦11 last inputs]]

[◦21 and

[◦21 equal? [◦11 length subcomputations] one1]

[◦21 and

[◦21 equal?

[◦11 base-operand program]

[◦11 program [◦11 car subcomputations]]]

[◦21 equal?

[◦11 all-but-last inputs]

[◦11 inputs [◦11 car subcomputations]]]]]

[◦21 and

[◦21 equal? [◦11 length subcomputations] two1]

[◦21 and

[◦21 equal?

program

[◦11 program

[◦11 car [◦11 cdr subcomputations]]]]

(continued on next page)
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[◦21 and

[◦21 equal?

[◦11 decrement-last inputs]

[◦11 inputs

[◦11 car

[◦11 cdr subcomputations]]]]

[◦21 and

[◦21 equal?

[◦11 step-operand program]

[◦11 program

[◦11 car subcomputations]]]

[◦21 equal?

[◦21 cons

[◦11 predecessor [◦11 last inputs]]

[◦21 cons

[◦11 output

[◦11 car

[◦11 cdr

subcomputations]]]

[◦11 all-but-last inputs]]]

[◦11 inputs

[◦11 car subcomputations]]]]]]]]]]

The minimization-computation? predicate tests whether its input is the
encoding for a computation in which the function to be applied is a minimiza-
tion, say [µn p]. When such a function is applied successfully, yielding an
output, all of the subcomputations are applications of the function p to a list
of inputs that include the inputs x0, . . . , xn−1 to the main computation as well
as the satisfaction candidate t (at the end). We’ll conventionally arrange these
subcomputations in such a way that the last input in each case matches the
subcomputation’s zero-based position in the list. In other words, the initial
subcomputation will be the application of p to x0, . . . , xn−1, 0, the next will be
the application of p to x0, . . . , xn−1, 1, and so on.

The number of subcomputations is one greater than the output r of the
minimization function, since in order to find r it is necessary to discover that
the values 0, . . . , r−1 do not satisfy p and that r does satisfy p. Thus the output
of all but the last of the subcomputations is 0 and the output of the last one is
1.

When a minimization function is undefined for some particular combination
of inputs, there is no corresponding computation, since the list of subcomputa-
tions would have to be infinite, and we have no way to encode infinitely long
lists.

The minimization-computation? predicate, therefore, checks to make sure
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that (a) the program in the computation encodes a minimization function, (b)
the length of the list of subcomputations is the successor of the output, (c) the
program for each subcomputation is the minimization predicate of the program
in the main computation, (d) the inputs for each subcomputation are the inputs
for the main computation together with the appropriate satisfaction candidate,
and (e) the output for each subcomputation except the last is 0 and the out-
put for the last subcomputation is 1. (To implement (e), we actually match
the subcomputation’s output against the result of an equality test between the
satisfaction candidate and the main computation’s output.)

minimization-computation? ≡
[◦21 and

[◦11 minimization-function? program]

[◦21 and

[◦21 equal?

[◦11 length subcomputations]

[◦11 successor output]]

[◦41 [∀̄3 [◦24 and

[◦24 equal?

pr0
4

[◦14 program

[◦24 list-ref subcomputations pr3
4]]]

[◦24 and

[◦24 equal?

[◦24 cons-at-end pr1
4 pr3

4]

[◦14 inputs

[◦24 list-ref

subcomputations

pr3
4]]]

[◦24 equal?

[◦24 equal? pr2
4 pr3

4]

[◦14 output

[◦24 list-ref

subcomputations

pr3
4]]]]]]

[◦11 minimization-predicate program]

inputs

output

output]]]

To count as the encoding of a valid computation, a number must satisfy one
of the preceding six predicates, as well as the launch-checks? predicate, and
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moreover it must satisfy the condition that all of its subcomputations must also
encode valid computations. We deferred the enforcement of that last condition
until now in order to be able to use course-of-values recursion to apply it; since
all of the subcomputations of a computation are (obviously) less than the com-
putation itself, we can find the results of applying the predicate computation?

recursively to those smaller numbers by looking them up in the list provided by
the course-of-values mechanism.

computation? ≡
[g̃0 [◦22 and

[◦22 or

[◦12 zero-computation? pr0
2]

[◦22 or

[◦12 successor-computation? pr0
2]

[◦22 or

[◦12 projection-computation? pr0
2]

[◦22 or

[◦12 composition-computation? pr0
2]

[◦22 or

[◦12 recursion-computation? pr0
2]

[◦12 minimization-computation?

pr0
2]]]]]]

[◦22 and

[◦12 launch-checks? pr0
2]

[◦22 [~∧1 list-ref-from-end]

pr1
2

[◦12 subcomputations pr0
2]]]]]

Note that, since we have used only primitive recursive functions in the defini-
tions of these predicates, computation? itself is a primitive recursive predicate
and so yields an output, either 0 or 1, for every possible input.

Exercises

12–1 Compute the encoding of the simplest possible computation: applying
zero to no inputs, outputting 0 after no subcomputations.

12–2 Define a singulary, primitive recursive function gir that, given the en-
coding for a computation as input, outputs the greatest number that resulted
from any of its subcomputations. (The name ‘gir’ is an acronym for “greatest
intermediate result.”) If the input to gir does not encode a computation, gir
should output 0.

12–3 Define a singulary function successor-applications that inputs the
encoding for a computation and returns a tally of the number of times the
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successor function is applied to an input in the course of that computation.
If the input does not encode a computation, successor-applications should
output 0. Prove that successor-applications is primitive recursive.
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Chapter 13

The Universality Theorem

With the help of the computation? predicate, we can proceed to define a single
“universal” function that can, in effect, emulate any desired partial recursive
function. We’ll call this universal function apply. It takes two inputs: the
encoding for the program of the function f to be emulated, and the encoding
for the list of the inputs to which f is to be applied.

For instance, we saw in section 11 that the natural number 262160 encodes
our predecessor function. To simulate the application of predecessor to
the input 7, form the encoding of a list with 7 as its only element (which is
cons(7, nil()), or 128). Then apply(262160, 128) = predecessor(7) = 6.

Theorem 13.1 The universal function apply is partial recursive.

Proof: The approach to defining apply is basically brute-force search. We
use unbounded minimization to run through the natural numbers in ascending
order, checking each one to see whether it encodes a computation whose program
is the program for f and whose inputs are the specified inputs. When and if we
find such a computation, we recover its output. That’s all there is to it!

apply ≡ [◦12 output

[µ2 [◦23 and

[◦13 computation? pr2
3]

[◦23 and

[◦23 equal? pr0
3 [◦13 program pr2

3]]

[◦23 equal? pr1
3 [◦13 inputs pr2

3]]]]]]

This definition proves that apply is a partial recursive function, but, since
the definition uses unbounded minimization, it may not be primitive recursive.
In fact, since apply has to simulate partial recursive functions that are not
total, such as minus, apply itself cannot be total; it will be undefined whenever
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the function it is emulating is undefined, since in those cases no encoding for a
suitable computation will ever be found.

It may seem artificial or inconvenient to have to assemble f ’s inputs into a list
for the benefit of apply. This is necessary only because apply, which must itself
have some fixed valence, allows f to have any valence. An alternative approach
would be to have a separate universal function for each possible valence:

apply-nullary(e) = apply(e, nil())

apply-singulary(e, x) = apply(e, cons(x, nil()))

apply-binary(e, x0, x1) = apply(e, cons(x0, cons(x1, nil())))

. . .

or, in our notation,

apply-nullary ≡ [◦21 apply pr0
1 nil1]

apply-singulary ≡ [◦22 apply pr0
2 [◦22 cons pr1

2 nil2]]

apply-binary ≡ [◦23 apply pr0
3 [◦23 cons pr1

3 [◦23 cons pr2
3 nil3]]]

and so on.

Exercises

13–1 Could one make the encoding eapply for the apply function as the first
input to the apply function itself? What kind of value would the second input
to apply have to be in this situation? What kind of value would be the result
be?

13–2 Can apply be undefined when its first input is the encoding of a total
function? Justify your answer.

13–3 Define a partial recursive function application-sum that takes two
inputs, the first of which is the encoding e for a singulary function f and the
second a natural number n, and outputs the sum of the values obtained by
applying f to every natural number less than or equal to n. We should have
application-sum(e, n) ↑ whenever f(k) ↑ for any natural number k less than or
equal to n.
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The Halting Predicate

It would be quite useful, as a kind of supplement to apply, to be able to
work with a total predicate defined? that would take as inputs the encod-
ing for a partial recursive function f and a list of inputs x0, . . . , xn−1 to f
and determine whether f(x0, . . . , xn−1) ↓. Given apply, it is tempting to try
to define such a predicate as [◦12 truish? [◦12 one1 apply]]. Unfortunately,
this definition fails; the function that it describes correctly returns 1 whenever
f(x0, . . . , xn−1) ↓, but when f(x0, . . . , xn−1) ↑ it is itself undefined instead of
returning 0.

Indeed, it turns out that defined? is not a partial recursive function at all!

Theorem 14.1 The predicate defined? is not partial recursive.

Proof: The proof is by contradiction, using a diagonal argument. Suppose
that defined?, in addition to being total and a predicate, were partial recursive.
Then we would be able to use it to define another function, self-blocker, as
follows:

self-undefined? ≡ [◦11 not [◦21 defined? pr0
1 [◦21 cons pr0

1 nil1]]]

self-blocker ≡ [µ1 [◦12 self-undefined? pr0
2]]

Given the encoding e of a singulary partial recursive function f , the predicate
self-undefined? would compute and output not(defined?(e, cons(e, nil()))),
which (by definition) would be 0 if f(e) ↓ and 1 if f(e) ↑. So, given e as its first
input and any natural number t as its second input, the predicate to which the
unbounded minimization is applied would ignore t completely, again outputting
0 if f(e) ↓ and 1 if f(e) ↑. So the function defined by unbounded minimization,
namely self-blocker, would be undefined for any input e such that f(e) ↓
(because no choice of t would make [◦12 self-undefined? pr0

2](e, t) positive),
and would output 0 for any input e such that f(e) ↑.

Now, if defined? were partial recursive, then self-blocker would also be
partial recursive, and so there would be a natural number d that encoded it.
Then, as we have seen, self-blocker(d) would be defined (and would be 0) if,
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and only if, self-blocker(d) ↑. This is a contradiction.

Exercises

14–1 Is self-blocker (a) a partial recursive function that cannot be defined
in terms of defined?; (b) a function that is not partial recursive; or (c) not a
function at all? Justify your answer.

14–2 Let total? be a total singulary function that takes as input the encoding
for a partial recursive function f and outputs 1 if f is total and 0 otherwise.
Prove that total? is not partial recursive.



Chapter 15

Recursive and Recursively
Enumerable Sets

A function is said to be recursive if, and only if, it is both partial recursive
and total. This is not quite the same as being primitive recursive, since it is
possible, even when f is total, that every definition of f includes at least one
use of unbounded minimization. In the computations for such functions, the
minimization operation always succeeds eventually, but there is no fixed upper
bound on the number of satisfaction candidates that must be tried. (It is true
that all primitive recursive functions are recursive, but the converse is not true.)

A set S of natural numbers is said to be recursive if, and only if, there
is some singulary, recursive function p such that the inputs that satisfy p are
exactly the members of S:

p(x) > 0⇐⇒ x ∈ S.

Since recursive functions are total, this condition implies that p(x) = 0⇐⇒ x /∈
S. The predicate p that meets this condition (so that p(x) = 1 ⇐⇒ x ∈ S) is
sometimes called the characteristic function of S.

We have already encountered a few such predicates. For instance, zero? is
the characteristic function of {0}, and even? is the characteristic function of
{0, 2, 4, . . .}, so both of these sets are recursive. It is not difficult to see that
every finite set of natural numbers is recursive; for instance, the set {0, 2, 5} has
the primitive recursive characteristic function

[◦21 or

[◦21 equal? pr0
1 zero1]

[◦21 or

[◦21 equal? pr0
1 two1]

[◦21 equal? pr0
1 five1]]]

and this pattern can be extended to any finite set.
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Theorem 15.1 The set of encodings of valid computations is recursive.

Proof: The computation? predicate defined at the end of § 12 is singulary
and primitive recursive (and therefore recursive), and it is the characteristic
function for the set of encodings of valid computations.

However, not all sets are recursive. Consider, for instance, the set K of
encodings for pairs (i, j) such that i encodes a partial recursive function f , j
encodes a list of inputs x0, . . . , xn−1 for that function, and f(x0, . . . , xn−1) ↓.

Theorem 15.2 K is not recursive.

Proof: If K were recursive, then its characteristic function (let’s call it
applicable-pair?) would also be recursive, and hence partial recursive. But
then the halting predicate defined? from § 14 would be partial recursive, since
we would be able to define it thus:

defined? ≡ [◦12 applicable-pair? cons]

Since defined? is not partial recursive, neither is applicable-pair?, and hence
K is not a recursive set.

Theorem 15.3 The union S ∪ T and the intersection S ∩ T of any recursive
sets S and T are recursive.

Proof: Let s and t be the characteristic functions for S and T , respectively.
Then [◦21 or s t] is a characteristic function for S ∪ T , and [◦21 and s t] is a
characteristic function for S ∩ T .

Theorem 15.4 The complement S̃ of any recursive set S is recursive.

Proof: Let s be the characteristic function for S. Then [◦11 not s] is a
characteristic function for S̃.

A set S of natural numbers is said to be recursively enumerable if, and only
if, there is some singulary partial recursive function f such that the inputs for
which f is defined are exactly the members of S:

f(x) ↓ ⇐⇒ x ∈ S.

Let’s call f the acceptance function for S.

Theorem 15.5 Every recursive set is recursively enumerable.

Proof: Any recursive set S has a partial recursive characteristic function s,
so that the function [µ1 [◦12 s pr0

2]] will also be partial recursive. This func-
tion is an acceptance function for S.
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Theorem 15.6 K is recursively enumerable.

Proof: The singulary partial recursive function [◦21 apply car cdr] is an
acceptance function for K.

Thus recursive sets form a proper subset of recursively enumerable sets.

Theorem 15.7 The intersection S ∩ T of any recursively enumerable sets S
and T is recursively enumerable.

Proof: Let s and t be acceptance functions for S and T , respectively. Then
[◦21 add s t] is an acceptance function for S ∩ T .

Theorem 15.8 The union S ∪ T of any recursively enumerable sets S and T
is recursively enumerable.

The proof of this theorem, though instructive, is a little subtle. We need
to return to the notion of computation and, in effect, carry through parallel
searches for computations involving members of S and members of T .

Proof: Since S and T are recursively enumerable, they must have singulary
partial recursive acceptance functions, say s and t respectively. Let s-encoded
and t-encoded be nullary functions with the encoding for s and the encoding
for t as their respective outputs. Then we can define a partial recursive predi-
cate stx? that takes two inputs, a natural number x and the encoding c for a
computation, and asks whether c is a valid computation that has either s or t
as its program and x as its input:

stx? ≡ [◦22 and

[◦12 computation? pr1
2]

[◦22 and

[◦22 equal? [◦12 inputs pr1
2] [◦22 cons pr0

2 nil2]]

[◦22 or

[◦22 equal? [◦12 program pr1
2] s-encoded2]

[◦22 equal? [◦12 program pr1
2] t-encoded2]]]]

Whenever s(x) ↓, there is a computation that has the encoding of s as its
program, cons(x, nil()) as its list of inputs, and s(x) as its output; if cs is
the encoding for such a computation, then stx?(x, cs) is 1. Similarly, whenever
t(x) ↓, there is a computation, encoded by, say ct, such that stx?(x, ct) is 1. But
if s(x) ↑ and t(x) ↑, then stx?(x, c) = 0 for every natural number c, because there
is no computation that meets all the requisite conditions.

The function [µ1 stx?], then, takes one input, x, and searches for the least
natural number c such that stx?(x, c) > 0. So [µ1 stx?](x) ↓ if, and only if,
s(x) ↓ or t(x) ↓ (or both). Therefore, [µ1 stx?] is an acceptance function for
S ∪ T . So S ∪ T is recursively enumerable.
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The situation with respect to complements of recursively enumerable sets is
even more complicated. If a set S is recursive, then S is recursively enumerable
(because all recursive sets are), and its complement S̃ is also recursively enumer-
able (because the complement of a recursive set is recursive, and all recursive
sets are recursively enumerable). It turns out that the converse is also true:

Theorem 15.9 If a set S and its complement S̃ are both recursively enumer-
able, then S is recursive.

Proof: Suppose that both S and S̃ are recursively enumerable. Then they
must have singulary partial recursive acceptance functions, say s and s̃. From
these, we can define the following related functions:

yes(x) =

{
1 if s(x) ↓,
↑ otherwise,

no(x) =

{
0 if s̃(x) ↓,
↑ otherwise,

yes ≡ [◦11 one1 s],

no ≡ [◦11 zero1 s̃].

Thus yes will also be an acceptance function for S and no an acceptance
function for S̃. Let yes-encoded and no-encoded be nullary functions that
output the encodings for yes and no, respectively.

Now, since S and S̃ are complements, every natural number x is a member
of one or the other. Consequently, for every natural number x, either yes(x) or
no(x) is defined, so that there is a valid computation c in which either yes or
no is applied to x. So define a function yes-or-no? as follows:

yes-or-no? ≡ [◦22 and

[◦12 computation? pr1
2]

[◦22 and

[◦22 equal? [◦12 inputs pr1
2] [◦22 cons pr0

2 nil2]]

[◦22 or

[◦22 equal? [◦12 program pr1
2] yes-encoded2]

[◦22 equal? [◦12 program pr1
2] no-encoded2]]]]

No matter what x is, there will always be some encoding c for a computa-
tion such that yes-or-no?(x, c) = 1. The output of that computation will be 1
(from yes) if x ∈ S, 0 (from no) if x ∈ S̃. So [◦11 output [µ1 yes-or-no?]]

is a singulary, total, partial recursive characteristic function for S. So S is re-
cursive, as required.
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From the preceding theorems, it follows that there are some sets that are
not even recursively enumerable. In particular:

Theorem 15.10 K̃ is not recursively enumerable.

Proof: If K̃ were recursively enumerable, then, since K is recursively enu-
merable (Theorem 15.6), K would be recursive, by Theorem 15.9. But this
would contradict Theorem 15.2.

There are several alternative ways to characterize recursively enumerable
sets. For instance, every recursively enumerable set, except the empty set, is
the set of outputs of some primitive recursive function:

Theorem 15.11 If a set S is recursively enumerable and not empty, then there
is a singulary primitive recursive function f such that S = {f(n) | n ∈ N}.

Proof. Since S is not empty, it has some least member s. Let s-constant

be a nullary function that outputs s. Since S is recursively enumerable, there
is an acceptance function g for it. Let g-encoded be a nullary function that
outputs the encoding for g. Then define

g-inputs ≡ [¿1 [◦21 and

computation?

[◦21 equal? program g-encoded1]]

[◦11 car inputs]

s-constant1]

Given a natural number x, g-inputs checks whether it encodes a valid com-
putation in which the program encodes g. If so, it outputs the input n to that
program; since n encodes a valid computation, g(n) ↓, so n ∈ S. If x does not
encode a valid computation, or encodes a computation for some function other
than g, g-inputs outputs s, which is by definition a member of S. Thus every
output of g-inputs is a member of S. Conversely, for every member n of S,
g(n) ↓, so there must be a computation with a program that encodes g and a
list of inputs whose only element is n; when g-inputs is given the encoding for
this computation, it returns n. So S = {g-inputs(n) | n ∈ N}, so that the
required function f in the statement of the theorem is the singulary, primitive
recursive function g-inputs.

The converse of the preceding theorem is also true, and indeed we can even
weaken the condition, so that f need only be partial recursive, not primitive
recursive:

Theorem 15.12 For any partial recursive function f , the set {f(n) | n ∈ N}
is recursively enumerable.

Let f-encoded be a nullary function that outputs the encoding for f . Then
define
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f-output-match? ≡ [◦22 and

[◦12 computation? pr1
2]

[◦22 and

[◦22 equal? [◦12 program pr1
2] f-encoded2]

[◦22 equal? pr0
2 [◦12 output pr1

2]]]]

The f-output-match? predicate takes two inputs, n and c, and determines
whether c encodes a computation that has a program that encodes f and an
output that is equal to n.

Now consider [µ1 f-output-match?]. Given a natural number n, this func-
tion searches for a natural number c such that f-output-match?(n, c) > 0—
that is, for the encoding of a computation in which f outputs n. If [µ1

f-output-match?] finds such a c, it outputs it; if no such computation exists,
[µ1 f-output-match?](n) ↑. Thus [µ1 f-output-match?] is an acceptance
function for S. Hence S is recursively enumerable.

Exercises

15–1 Prove that the set {0, 1, 4, 9, 16, . . .} of squares of natural numbers is
recursive.

15–2 Prove that the set of squares of members of the set K (as defined in the
explanation preceding Theorem 15.2) is recursively enumerable.

15–3 Is the set of all natural numbers recursively enumerable? Is it recursive?
Justify your answers.



Chapter 16

Turing Machines and Their
Configurations

In automata theory, a different model is more commonly used to analyze func-
tions and computations. A Turing machine is a simple, idealized computational
device, consisting of

• a store, which is a memory of finite capacity, capable of holding any of a
specified finite repertoire of values, called the states of the Turing machine;

• a read-write head, which can interoperate with an external storage device
of unlimited capacity, reading one symbol at a time from that device or
writing one symbol at a time to it; and

• a control, directing the activity of the store and the read-write head ac-
cording to a fixed program.

The external storage device for a Turing machine is a tape, an infinite se-
quence of storage cells, in one-to-one correspondence with the natural numbers.
Each cell is capable of storing one symbol from a finite tape alphabet, which is
the set of symbols that the Turing machine is capable of reading or writing. The
tape alphabet includes a blank symbol, and storage cells that are not otherwise
initialized contain this symbol by default.

The designer of a Turing machine designates a proper subset of the tape
alphabet, not including the blank, as the input alphabet. The input to a Turing
machine is a finite string s of symbols from the input alphabet. To prepare a
tape for a Turing machine. we store the first symbol of the input s in cell 0, the
second in cell 1, and so on in sequence. Cells corresponding to natural numbers
greater than or equal to |s| are left blank. Since a Turing machine can write
only one symbol at a time onto its tape, all but a finite number of cells remain
blank at any stage in a computation.

When a tape is loaded into a Turing machine, the control initializes the store
to a designated start state q0 and positions its read-write head over cell 0. It
then repeatedly executes the following steps:
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• It reads the tape symbol currently under the read-write head.

• Using that tape symbol and the contents of the store, it deterministically
computes three values: a new state, a new tape symbol, and one of the
two arbitrary values L and R.

• It updates the store to contain the new state.

• It writes the new tape symbol into the cell currently under the read-write
head.

• If the third computed value is R, the control moves the read-write head
one cell to the right along the tape (to the cell that corresponds to the
next greater natural number). If the third computed value is L, the control
moves the read-write head one cell to the left if possible, to the cell that
corresponds to the next lesser natural number; but if the read-write head
is already over cell 0, the control does not move it at all, but leaves it on
cell 0.

This cycle is repeated until the control finds that the store contains one of
two designated stopping states, qaccept or qreject. The control recognizes these as
commands to halt the processing of the tape. If, at the time it halts, the store
contains qaccept, the Turing machine accepts the input string that was on its
tape initially. If, instead, the store contains qreject, the Turing machine rejects
that string.

It may happen that, on some or all possible input strings, a particular Turing
machine continues to run through its processing cycle forever, without ever
storing qaccept or qreject, so that the Turing machine neither accepts nor rejects
its input.

In effect, then, a Turing machine computes a partial function f that has one
input, a string s of symbols from its input alphabet, and one output, a Boolean
value. To compute f(s), we load s onto a tape, insert the tape into the Turing
machine, and inspect the state of the store if and when the machine halts.

For any Turing machine M , the language of M , L(M), is the set of strings
that M accepts. M is said to recognize this set. If M rejects every string that
it does not accept (or, equivalently, if M eventually halts no matter what input
string it is given), then M is said to decide L(M).

A set of strings is Turing-recognizable if there is some Turing machine that
recognizes it, and decidable if there is some Turing machine that decides it.

Modelling Turing Machines

Using the data structures developed in § 7, we can model Turing machines and
their configurations within N. To describe the workings of Turing machines
using partial recursive functions, we shall first develop a system for encoding
Turing machines as natural numbers.
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Formally, we’ll define (deterministic, single-tape) Turing machines as septu-
ples of the form (Q,Σ,Γ, δ, q0, qaccept, qreject), where Q is a finite set of states,
Σ is a finite alphabet not containing the blank symbol, Γ is a finite alphabet
containing the blank symbol and every symbol in Σ (as well as, possibly, oth-
ers), δ is a transition function with domain (Q−{qaccept, qreject})×Γ and range
Q× Γ× {L,R}, q0 ∈ Q, qaccept ∈ Q, qreject ∈ Q, and qreject 6= qaccept.

Even in this highly abstract and mathematized form, Turing machines are
clearly quite complicated structures. Nevertheless, finding a correspondence
that maps each Turing machine to a different natural number is just a matter
of perseverance. We already have all of the tools we need.

Let’s begin with the states. Each state can be given a serial number, starting
with 0 and counting upwards without skipping. The last serial number used will
be n − 1, where n is the number of states. Every Turing machine has at least
two states, since qreject 6= qaccept. Without loss of generality, we can stipulate
that qreject will always be given the largest serial number and qaccept the next
largest one.

If the serial numbers are assigned in this way, we can represent the set of
states in our encoding simply by the integer n. Any number greater than or
equal to 2 is a valid encoding for a set of states.

It will be convenient, then, to define several functions relating to the states of
a Turing machine: TM-states, which inputs the encoding for a Turing machine
and returns the number of its states; TM-accept-state and TM-reject-state,
which input the encoding for a Turing machine and return, respectively, the
serial numbers of its accept and reject state; TM-states?, a predicate that
determines whether a given natural number is a valid number of states for a
Turing machine; and TM-stopping-state?, a predicate that inputs the encoding
for a Turing machine and the serial number of one of its states and determines
whether the state is either of the machine’s stopping states (i.e., the accept and
reject states).

TM-states ≡ [◦21 list-ref pr0
1 zero1]

TM-accept-state ≡ [◦21 subtract TM-states two1]

TM-reject-state ≡ [◦21 subtract TM-states one1]

TM-states? ≡ [◦21 greater-or-equal? pr0
1 two1]

TM-stopping-state? ≡ [◦22 greater-or-equal?

pr1
2

[◦22 subtract [◦12 TM-states pr0
2] two2]]

Next, the alphabets. As in § 7, we can give each symbol in the tape alphabet a
different positive integer as its serial number. Without loss of generality, we can
use the serial number 1 for the blank and give the immediately following serial
numbers to members of the input alphabet, saving the higher serial numbers
for non-blank symbols that are members of the tape alphabet but not of the
input alphabet. In our encodings of Turing machines, then, we can represent
the input alphabet and tape alphabets simply as their sizes, constraining the
tape alphabet to be at least 1 and at least as great as the input alphabet.
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The TM-input-alphabet function inputs the encoding for a Turing machine
and outputs the size of its input alphabet, and the TM-tape-alphabet function
similarly recovers the size of a given Turing machine’s tape alphabet. The
TM-input-alphabet? predicate determines whether a given natural number is
a valid size for an input alphabet; since the input alphabet can be of any size,
even 0, this predicate is simply one1. Lastly, the TM-tape-alphabet? predicate
inputs two natural numbers, interprets the first as the size of a Turing machine’s
input alphabet, and determines whether the second is a valid size for that same
Turing machine’s tape alphabet.

TM-input-alphabet ≡ [◦21 list-ref pr0
1 one1],

TM-tape-alphabet ≡ [◦21 list-ref pr0
1 two1],

TM-input-alphabet? ≡ one1,

TM-tape-alphabet? ≡ [◦22 and [◦12 positive? pr1
2] less-or-equal?]

Now let’s consider the transition function δ. The values of the transition
function are triples of the form (q, a, d), where q ∈ Q, a ∈ Γ, and d ∈ {L,R}.
We can encode such a triple as a three-element list in which the first element
is q̄, the second ā, and the third is 0 if d is L and 1 if d is R. (Here q̄ is the
encoding for the state q and ā the encoding for the symbol a, considered as an
element of the tape alphabet.)

The encode-TM-action function constructs and outputs such a triple from
the encodings for its components, and the next three functions defined below
extract the respective components from such a triple. Lastly, TM-action? pred-
icate inputs three natural numbers, interprets the first two as the number of
states in a Turing machine and the size of its tape alphabet, and determines
whether the third could be used to represent an action of that same Turing
machine.

encode-TM-action ≡ [◦23 cons pr0
3 [◦23 cons pr1

3 [◦23 cons pr2
3 nil3]]]

TM-action-target-state ≡ car

TM-action-symbol-to-print ≡ [◦11 car cdr]

TM-action-direction ≡ [◦11 car [◦11 cdr cdr]]
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TM-action? ≡ [◦23 and

[◦23 equal? [◦13 length pr2
3] three3]

[◦23 and

[◦23 less? [◦12 car pr2
3] pr0

3]]

[◦23 and

[◦23 [◦22 and

[◦12 positive? pr0
2]

less-or-equal?]

[◦13 car [◦13 cdr pr2
3]]

pr1
3]

[◦23 less-or-equal?

[◦13 car [◦13 cdr [◦13 cdr pr2
3]]]

one3]]]]

The transition function for a Turing machine must specify such an action
for each combination of a non-stopping state and a symbol from the tape al-
phabet. We can therefore represent a transition function as the encoding for
a list of length |Q − {qaccept, qreject}| · |Γ|, in which the elements are Turing
machine actions. In this list, we place the encoding for δ(q, a) at zero-based po-
sition q̄ · |Γ| + predecessor(ā). (The application of the predecessor function
compensates for the fact that the serial numbers for tape symbols begin with
1.)

In this implementation, the TM-transition-function function inputs the
encoding for a Turing machine and outputs the encoding for its transition func-
tion; the TM-transition-function? predicate inputs three natural numbers,
interprets the first as the number of states in a Turing machine and the second as
the size of its tape alphabet, and determines whether the third would be a valid
transition function for that Turing machine; and the TM-transition-lookup

function inputs a Turing machine, a non-stopping state of that Turing machine,
and a symbol from that Turing machine’s tape alphabet, and outputs the encod-
ing for the action that that Turing machine will perform as its next transition.

TM-transition-function ≡ [◦21 list-ref pr0
1 three1]

TM-transition-function? ≡ [◦23 and

[◦23 equal?

[◦13 length pr2
3]

[◦23 multiply

pr1
3

[◦23 subtract pr0
3 two2]]]

[~∧2 TM-action?]]
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TM-transition-lookup ≡ [◦23 list-ref

[◦13 TM-transition-function pr0
3]

[◦23 add

[◦23 multiply

pr1
3

[◦13 TM-tape-alphabet pr0
3]]

[◦13 predecessor pr2
3]]]

Finally, we must indicate the state in which the Turing machine is to be
started. We cannot simply stipulate that the start state is the one that receives
the serial number 0, because in some Turing machines the start state is the
same state as qreject or qaccept. So we shall add the start state’s serial number
explicitly to our encoding.

The TM-start-state function inputs the encoding for a Turing machine and
outputs the encoding for its start state. The TM-start-state? predicate inputs
two natural numbers, interprets the first as the number of states of a Turing
machine, and determines whether the second input could be the encoding for
the start state of that Turing machine.

TM-start-state ≡ [◦21 list-ref pr0
1 four1]

TM-start-state? ≡ greater?

Thus we shall encode Turing machines as five-element lists (n, j, k, δ̄, i),
where n is the number of states in the machine, j the number of symbols in
the input alphabet, k the number of symbols in the tape alphabet, δ̄ the encod-
ing of the transition function, and i the serial number of the start state.

encode-TM ≡ [◦25 cons

pr0
5

[◦25 cons

pr1
5

[◦25 cons

pr2
5

[◦25 cons pr3
5 [◦25 cons pr4

5 nil5]]]]]



89

TM? ≡ [◦21 and

[◦21 equal? length five1]

[◦21 and

[◦11 TM-states? [◦21 list-ref pr0
1 zero1]]

[◦21 and

[◦11 TM-input-alphabet? [◦21 list-ref pr0
1 one1]]

[◦21 and

[◦21 TM-tape-alphabet?

[◦21 list-ref pr0
1 one1]

[◦21 list-ref pr0
1 two1]]

[◦21 and

[◦21 TM-transition-function?

[◦21 list-ref pr0
1 zero1]

[◦21 list-ref pr0
1 two1]

[◦21 list-ref pr0
1 three1]]

[◦21 TM-start-state?

[◦21 list-ref pr0
1 zero1]

[◦21 list-ref pr0
1 four1]]]]]]

For example, consider a very simple Turing machine on the input alphabet
{a}. When started, it inspects the first cell of the tape and transitions to state
qaccept if it finds a blank there, or to state qreject if it finds an a, printing a blank
and moving the read-write head rightwards in either case. Thus this Turing
machine decides the language {ε} (that is, it accepts only the null string).

The three states of this machine will receive the serial numbers 0, 1, and
2—respectively, the start state, qaccept, and qreject. The input alphabet contains
one symbol and the tape alphabet contains two. The transition function is
completely defined by the equations

δ(q0, ) = (qaccept, ,R),

δ(q0, a) = (qreject, ,R).

(where ‘ ’ is the blank symbol). The encoding for the triple on the right-
hand side of the first of these equations is cons(1, cons(0, cons(1, nil()))), since
qaccept, , and R are all encoded as 1, and we take the predecessor of the en-
coding for the symbol to get the middle element of the triple. This value works
out to be 22. Similarly, the encoding for the triple on the right-hand side of the
second equation is cons(2, cons(0, cons(1, nil()))), which is 44. So the transi-
tion function δ is represented by the list (22, 44), which is encoded as cons(22,
cons(44, nil())), or 147573952589680607232.

Assembling the pieces, then, we find that the encoding for the Turing ma-
chine is equal to the encoding for the list (3, 1, 2, 147573952589680607232, 0),
which works out to be 3 · 2147573952589680607241 + 296. This may seem like a
largish number for such a simple device. The magnitudes of the encodings,
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however, are of little or no significance. What is important is that every Tur-
ing machine has a unique representation and that we can extract any desired
information about the Turing machine from that representation.

Exercises

16–1 Define a predicate possibly-restarting? that takes the encoding for
a Turing machine M as its input and outputs 1 if any of the transitions in M
return the machine to its start state, 0 if none do.

16–2 Define a predicate rightwards-only? that takes the encodings for a
Turing machine M as its input and outputs 1 if all of the transitions in M cause
the tape head to move to the right, 0 otherwise.

16–3 Define a function add-new-start-state that takes the encoding for a
Turing machine M as its input and returns the encoding for a Turing machine
M ′ similar to M , but with one additional state. The new state should be the
start state of M ′ and should have the same out-transitions as the start state of
M . All of the states of M should also be states of M ′ and their out-transitions
should be unchanged.



Chapter 17

Encoding Configurations

To represent a configuration of a Turing machine, we can use a triple in which
the first element is the serial number of the machine’s current state, the second
is the number of the tape cell that is under the read-write head, tape, and the
third is a string of symbols from the tape alphabet. The string should record
the contents of each cell that either contains a non-blank symbol or has been (or
is now) under the read-write head. Since there are only a finite number of such
cells when the Turing machine is started, and the number of such cells cannot
increase by more than 1 in any single execution cycle, the string is always of
finite length, bounded by the length of the input or the number of cycles that
have occurred so far, whichever is greater.

Again, we’ll define a constructor for the data type, a selector for each com-
ponent, and a type predicate:

encode-configuration ≡ [◦23 cons

pr0
3

[◦23 cons pr1
3 [◦23 cons pr2

3 nil3]]]]

current-state ≡ [◦21 list-ref pr0
1 zero1]

head-position ≡ [◦21 list-ref pr0
1 one1]

tape-contents ≡ [◦21 list-ref pr0
1 two1]
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configuration? ≡ [◦22 and

[◦22 equal? [◦12 length pr1
2] three2]

[◦22 and

[◦22 greater?

[◦12 TM-states pr0
2]

[◦12 current-state pr1
2]]

[◦22 less?

[◦12 head-position pr1
2]

[◦12 string-length

[◦12 TM-tape-alphabet pr0
2]

[◦12 tape-contents pr1
2]]]]]

As an example of the use of the constructor, let’s write a function that
constructs and returns the encoding for the initial configuration of a Turing
machine M that is about to process the input string s, given the encodings M̄
and s̄ of M and s respectively. The first input to make-configuration should
be the start state of M , which is TM-start-state(M̄). The second should
be the position of the read-write head, which by definition is always 0 in the
initial configuration. And the third input should simply be the input string,
s, but expressed in the tape-alphabet encoding rather than the input-alphabet
encoding. (An exception arises, however, when s = ε; in that case, the third
input to make-configuration should be 1, the encoding for the string consisting
of a single blank, rather than 0, the encoding for the null string. This exception
is needed to establish the invariant that the initial position of the read-write
head is strictly less than the length of the string representing the tape contents.)

The reencode-input function converts the string s (provided that it is not
ε) from an encoding based on an m-symbol input alphabet to an encoding
based on an n-symbol tape alphabet, allowing also for the presence of the blank
symbol at the beginning of the tape alphabet (that is, with serial number 1).
It presupposes that the symbols of the input alphabet have the same relative
order within the tape alphabet and precede all of the other non-blank symbols
of the tape alphabet.

reencode-input(m,n, s̄) =

k−1∑
i=0

(
(string-ref(m, s̄, i) + 1) · ni

)
,

where k = string-length(m, s̄). This function is primitive recursive:
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reencode-input ≡ [◦43 [Σ̄3 [◦24 multiply

[◦14 successor

[◦34 string-ref pr0
4 pr2

4 pr3
4]]

[◦24 raise-to-power pr1
4 pr3

4]]]

pr0
3

pr1
3

pr2
3

[◦13 predecessor [◦23 string-length pr0
3 pr2

3]]]

So we can define the boot function that inputs the encoding for a Turing
machine and the encoding for an input string (in that Turing machine’s input
alphabet) and outputs the configuration of the Turing machine when the tape
is loaded, just before the first execution cycle:

boot ≡ [◦32 make-configuration

[◦12 TM-start-state pr0
2]

zero2

[¿2 [◦12 zero? pr1
2]

one2

[◦32 reencode-input

[◦12 TM-input-alphabet pr0
2]

[◦12 TM-tape-alphabet pr0
2]

pr1
2]]]

Note that the possibility that the input string is ε is handled as a special
case.

Given the encoding M̄ for a Turing machine M and the encoding c̄ for its
current configuration, the step function computes its next configuration, as
follows:

If the current state of the machine is qaccept or qreject, step(M̄, c̄) = c̄, since
M halts when it enters either of these states.

Otherwise, step recovers the encoding for the symbol currently under the
read-write head, using head-position(c̄) as an index into tape-contents(c̄).
By transmitting that symbol, along with the Turing machine and its current
state, to TM-transition-lookup, step determines the new state, the symbol
to be printed onto the tape, and the direction in which the read-write head
should move. It uses string-update to compute the revised tape contents; it
computes the new head position; and, finally, it uses make-configuration to
assemble the new configuration.

Before defining step, it will be helpful to define several intermediate func-
tions, all of which input the encoding for a Turing machine and the encod-
ing for a configuration of that machine. The first of these helper functions,
symbol-under-head, determines which of the Turing machine’s tape symbols is
in the cell on which the Turing machine’s read-write head is positioned.
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symbol-under-head ≡ [◦32 string-ref

[◦12 TM-tape-alphabet pr0
2]

[◦12 tape-contents pr1
2]

[◦12 head-position pr1
2]]

The next-action function recovers the triple containing the state into which
M is about to move, the symbol that it is about to print onto its tape, and the
direction in which it is about to move the read-write head. It finds this triple by
doing a lookup, using M ’s current state and the symbol it is currently reading.

next-action ≡ [◦32 TM-transition-lookup

pr0
2

[◦12 current-state pr1
2]

symbol-under-head]

The next-head-position function computes the next position of the read-
write head, moving right (by applying successor to the current position) if the
value of direction is 1 (encoding R), and left if it is 0. Note that moving left
from position 0 yields a new position of 0, since predecessor(0) = 0 under our
definitions.

next-head-position ≡ [¿2 [◦12 TM-action-direction next-action]

[◦12 successor [◦12 head-position pr1
2]]

[◦12 predecessor [◦12 head-position pr1
2]]]

The revised-tape-contents function computes the string that results from
the replacement of the character under the read-write head with the one that
will be printed there during the next transition.

revised-tape-contents ≡ [◦42 string-update

[◦12 TM-tape-alphabet pr0
2]

[◦12 tape-contents pr1
2]

[◦12 head-position pr1
2]

[◦12 TM-action-symbol-to-print

next-action]]

If the read-write head is about to move farther to the right than it has ever
previously been, we should append a blank to the string representing the tape
contents, so as to preserve the invariant that the position of the read-write head
is strictly less than the length of that string and can legitimately be used as an
index into that string. The next-tape-contents function reconciles the out-
puts of the next-head-position and revised-tape-contents by appending
the blank if necessary.



95

next-tape-contents ≡ [¿2 [◦22 equal?

[◦12 string-length

revised-tape-contents]

next-head-position]

[◦32 string-append

[◦12 TM-tape-alphabet pr0
2]

revised-tape-contents

one2]

revised-tape-contents]

Finally, we can define step thus:

step ≡ [¿2 [◦22 TM-stopping-state? pr0
2 [◦12 current-state pr1

2]]

pr1
2

[◦32 encode-configuration

[◦12 TM-action-target-state next-action]

next-head-position

next-tape-contents]]

The function [}2 step] can be used to drive a Turing machine forwards
through a specified number of steps; for instance,

[}2 step](M̄, c̄, 23)

is the encoding for the configuration produced by starting a Turing machine M
in the configuration c and letting it run for twenty-three steps (or until it halts,
whichever comes first).

Exercises

17–1 Define a predicate completely-blank? that takes as inputs a configu-
ration of a Turing machine and the size of that Turing machine’s tape alphabet
and determines whether any non-blank symbols appear on the tape described
in the given configuration, yielding 1 if every symbol is a blank and 0 otherwise.

17–2 How, exactly, does boot handle the case in which the input string is ε?
How does the configuration that boot returns reflect this?

17–3 Using boot and step, write an expression whose value encodes the
configuration of a Turing machine M that has been started on input w and has
just completed its second step of operation.

17–4 In the definition of next-tape-contents above, the third input to
string-append should be the encoding for a string of length 1 in which the sole
symbol is a blank, yet the next-to-last line of the definition indicates that the
third input will always be 1, the encoding for the blank symbol itself. Reconcile
this seeming inconsistency in the data types.
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Chapter 18

Simulating Turing Machines
in Operation

The running time of a Turing machine M on input s is the number of steps it
takes M to halt, that is, to enter qaccept or qreject. The partial recursive function
running-time computes this number of steps, given the encodings for M and
s:

running-time ≡ [µ2 [◦23 TM-stopping-state?

[◦13 current-state

[◦33 [}2 step]

pr0
3

[◦23 boot pr0
3 pr1

3]

pr2
3]]]].

Since some Turing machines, on some inputs, never enter a stopping state,
running-time is a partial recursive function.

The final configuration of the Turing machine in this setup is easily com-
puted:

final-configuration ≡ [◦32 [}2 step] pr0
2 boot running-time]

We can determine whether M accepts s by comparing the state component
of the final configuration to qaccept:

accepts? ≡ [◦22 equal?

[◦12 current-state final-configuration]

[◦12 TM-accept-state pr0
2]].

Since final-configuration and accepts? depend on running-time, they
too are partial recursive functions, but not primitive recursive ones. Also, they
too are undefined at certain inputs—specifically, in those cases where M , pro-
cessing s as input, never reaches a stopping state.
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We can define a similar rejects? predicate either by comparing the state
component of the final configuration to qreject rather than to qaccept, or more
simply as

rejects? ≡ [◦12 not accepts?].

Either way, we get a partial recursive function, and rejects? is undefined at
exactly the same inputs as accepts?. It would be nice if we could separate out
the cases in which the Turing machine does not reach any stopping state, by
defining a predicate runs-forever? such that

runs-forever?(M̄, s̄) =

{
1 if accepts?(M̄, s̄) ↑,
0 otherwise.

It is tempting to try to define runs-forever? as something like [◦12 not

[◦22 or accepts? rejects?]], but of course this function too is undefined in
the cases where M does not halt. In fact, the runs-forever? predicate is not
a partial recursive function.

Exercises

18–1 Could running-time(M̄, s̄) ever be less than string-length(s̄)? If so,
give an example; if not, explain why not.

18–2 If the sequence of configurations of a Turing machine M , as it processes
an input string s, ever includes a duplicate configuration, then M will never
halt on input s, but will forever repeat the cycle of the configurations. Write a
function repeating-configuration? that takes M̄ and s̄ as inputs, and out-
puts 1 if M ever enters the same configuration more than once while processing
s (without halting). If M halts on input s without ever repeating a configura-
tion, repeating-configuration? should yield 0. If M runs forever on input s
without repeating a configuration, repeating-configuration(M̄, s̄) ↑.

18–3 A busy beaver is a Turing machine that, when started on an initially
all-blank tape, accumulates at least as much running time before halting as
any other Turing machine with the same number of states and the same tape
alphabet. How would you search for a busy beaver with, say, five states and
a tape alphabet consisting of just the blank and the symbol *? Could there
be a busy-beaver function that takes a number n of states and the size m of
a tape alphabet as inputs and outputs the encoding of the n-state, m-symbol
busy beaver?



Chapter 19

The Models Are Equivalent

That Turing machines can be simulated within the recursive-function model of
computation suggests that there may be a relation between recursively enumer-
able sets and Turing-recognizable languages. In fact, except for the difference
that the elements of languages are strings and those of recursively enumerable
sets are natural numbers, the relation is identity.

Theorem 19.1 The set of encodings of members of any Turing-recognizable
language is recursively enumerable.

Proof: Let L be any Turing-recognizable language, let M be a Turing ma-
chine that recognizes L, let M̄ be the encoding for M , and let bar-M-constant
be a nullary function that outputs M̄ . Then

[µ1 [◦22 accepts? bar-M-constant2 pr0
2]]

is an acceptance function for the set of encodings of members of L, and (by
construction) it is partial recursive.

For any string s, applying this function to the encoding for s in effect sim-
ulates the execution of M on input s. If M accepts s, then the unbounded
minimization succeeds immediately with 0 as the second (ignored) input to the
minimized predicate, so the function outputs 0; if M fails to accept s, then
the unbounded minimization searches forever, and the function is undefined at
input s̄. Since there is a partial recursive acceptance function for the set of
encodings of members of L, it is recursively enumerable.

Theorem 19.2 If the set of encodings of members of a language is recursively
enumerable, then the language is Turing-recognizable.

Proof: Let L be any language, and suppose that the set of encodings of
members of L is recursively enumerable. Let f be a partial recursive acceptance
function for that set. Here is the construction plan for a Turing machine that
recognizes L: “On input s, (1) attempt to compute f(s̄); (2) accept.”
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Since f is partial recursive, it can be defined entirely in terms of the primi-
tive functions, composition, recursion, and unbounded minimization. Automata
theorists have shown (by construction) that a Turing machine can implement all
of these patterns of computation, encoding natural numbers as strings of digits
in some standard system of numeration chosen by the designer. For any string
s that is a member of L, f(s̄) ↓, such a Turing machine will complete step (1),
continue to step (2), and accept s. For any string s that is not a member of
L, f(s̄) ↑, so the Turing machine described above will never complete step (1)
and so will not accept s. So this Turing machine recognizes L, and hence L is
Turing-recognizable.

Theorem 19.3 A language is decidable if, and only if, the set of encodings of
its members is recursive.

Proof: Suppose first that a language L is decidable. Then there is a Turing
machine M that decides it, and therefore also recognizes it. Also, the Turing
machine M ′ that is exactly like M except that the roles of qaccept and qreject

are swapped decides (and therefore recognizes) the complement L̃ of L. Thus
both L and L̃ are Turing-recognizable. Hence, by Theorem 19.1, both the set
SL of encodings of members of L and the set SL̃ of encodings of members of L̃
are recursively enumerable. But every natural number encodes either a member
of L or a member of L̃, so SL̃ is the complement of SL. So both SL and its
complement are recursively enumerable; hence SL is recursive.

Conversely, suppose that SL is recursive. Then both SL and its comple-
ment, which is SL̃, are recursively enumerable; hence, by 19.2, both L and L̃
are Turing-recognizable. A Turing machine that combines the recognizers for L
and L̃, therefore, can decide L.

Exercises

19–1 Let’s say that a Turing machine M calculates a given partial recursive
function f if (and only if), when started on a tape that has a string of the form
:1n0:1n1 · · · :1nk−1 at its left end (where k is the valence of f), and is otherwise
blank, M halts if and only if f(n0, n1, . . . , nk−1) ↓, and when M halts its tape
is blank except for the string 1f(n0,n1,...,nk−1). Describe a Turing machine that
calculates (a) zero; (b) successor; (c) pr2

4.

19–2 Given Turing machines that calculate a function f of valence m and m
functions g0, . . . , gm−1 of valence n, describe how to construct a Turing machine
that calculates [◦mn f g0 ... gm−1].

19–3 Show that a set S of natural numbers is recursive if, and only if, the
language {1k | k ∈ S} is decidable.



Chapter 20

The Parameter Theorem

The functions for encoding and decoding functions are similar to facilities for
reflection in programming languages like Java and Python. They provide us
with a way to construct partial recursive functions “on the fly,” functions that
can depend on inputs to the “meta-function” that constructs them.

As a simple warm-up example, let’s define a function constantify that
takes one input, a natural number n, and outputs the encoding for a nullary
function that itself outputs n. (In other words, we want constantify(0) to be
the encoding for zero, constantify(1) the encoding for one, constantify(2)
the encoding for two, and so on.)

It is important to realize that this is a purely arithmetic function. We spec-
ified earlier that the encoding for zero is 0; we defined one as [◦10 successor

zero], so the encoding of one is 4k + 3, where k is the encoding for the list
cons(1, cons(0, cons(1, cons(0, nil())))). (The first 1 is the upper composition
index, the first 0 is the lower composition index, the second 1 is the encoding
for successor, and the second 0 is the encoding for zero.) It turns out that
the encoding for this list is 54, so that the encoding for one is 219. That’s the
value that we want constantify(1) to have.

Similarly, since we defined two as [◦10 successor one], the encoding of two
is 4k+ 3, where k encodes cons(1, cons(0, cons(1, cons(219, nil())))). Compu-
tation reveals that k is

1684996666696914987166688442938726917102321526408785780068975640598,

so that 4k + 3 is

6739986666787659948666753771754907668409286105635143120275902562395,

which is therefore the encoding for two and the value of constantify(2).
By doing some algebra involving the arithmetic definition of the cons func-

tion, we can determine the numerical relationship between successive values of
constantify, and even write recursion equations that specify it:

constantify(0) = 0,
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constantify(t+ 1) = 2constantify(t)+7 + 91.

Thus it is possible to define constantify by means of a direct recursion, using
raise-to-power and add. In order to illustrate reflection, however, we’ll write
these equations in a different way:

constantify(0) = encode-zero-function(),

constantify(t+ 1) = encode-composition(1, 0,

cons(encode-successor-function(),

cons(constantify(t), nil())))

This shows that a recursion that defines constantify can also indicate the
structure of the reflected code. When the input to constantify is positive,
the number that results encodes a composition in which the upper index is 1,
the lower index is 0, and the components are the successor function and the
result of applying constantify recursively to the next smaller natural number
(recovered through the projection function pr1

2).

constantify ≡ [g0 encode-zero-function

[◦32 encode-composition

one2

zero2

[◦22 cons

encode-successor-function2

[◦22 cons pr1
2 nil2]]]]

A subtler use of reflection functions is exemplified by the proof of the pa-
rameter theorem:

Theorem 20.1 For any natural numbers m and n, there is a primitive recur-
sive function sectionmn such that, for any function f of valence m+n, any en-
coding e of f , and any natural numbers u0, . . . , un−1, sectionmn (e, u0, . . . , un−1)
encodes a function g such that

f(x0, . . . , xm−1, u0, . . . , un−1) = g(x0, . . . , xm−1)

for any natural numbers x0, . . . , xm−1.

The idea is that sectionmn reworks the encoding for f into an encoding for
a function g that is similar to f , except that the values of the last n inputs have
been hard-wired into g (they are u0, . . . , un−1). Thus g is a “parameterized”
version of f . The name section comes from functional programming languages.

It is not too difficult to convert the preceding equation relating f and g
into a definition of g in terms of f and the nullary functions u0-constant, . . . ,
un−1-constant that output u0, . . . , un−1 respectively:

g ≡ [◦m+n
m f pr0

m . . . prm−1
m u0-constantm . . . un−1-constantm]
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The function sectionmn , in effect, automates the process of building this
definition from the encoding for f and the inputs u0, . . . , un−1, using the reflec-
tive constructors to build the compositions and the projection functions, and
applying constantify to turn each ui into the corresponding ui-constant.

The exact details of the definition depend, of course, on m and n, so what we
give here is a template that indicates how to construct any member of the family.
It presupposes that we have already defined nullary functions zero, one, . . . ,
(m−1)-constant, m-constant, and n-constant that return 0, 1, . . . ,m−1,m,
and n respectively.

sectionmn ≡
[◦3n+1 encode-composition

[◦2n+1 add m-constantn+1 n-constantn+1]

m-constantn+1

[◦2n+1 cons

pr0
n+1

[◦2n+1 cons

[◦2n+1 encode-projection-function

zeron+1

m-constantn+1]

...

[◦2n+1 cons

[◦2n+1 encode-projection-function

(m− 1)-constantn+1

m-constantn+1]

[◦2n+1 cons

[◦3n+1 encode-composition

zeron+1

m-constantn+1

[◦2n+1 cons

[◦1n+1 constantify pr1
n+1]

niln+1]]

...

(continued on next page)
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[◦2n+1 cons

[◦3n+1 encode-composition

zeron+1

m-constantn+1

[◦2n+1 cons

[◦1n+1 constantify prnn+1]

niln+1]]

niln+1] · · · ]] · · · ]]]

Since we use only primitive recursive functions in the definition of sectionmn ,
it is itself primitive recursive. This completes the proof of the theorem.

To illustrate the use of the parameter theorem and the sectionmn functions
that it defines, let’s prove that there is a singulary, primitive recursive function
converse that takes as its input the encoding for any binary, partial recursive
function f and returns the encoding for a binary, partial recursive function g
such that g(x0, x1) = f(x1, x0).

To begin with, notice that we can use the universality theorem of § 13 to get
a function in which the encoding for f (let’s call it e) is an explicit parameter,
based on the equation

f(x1, x0) = apply-binary(e, x1, x0).

By composing apply-binary with suitable projection functions, we can re-
arrange the inputs in any way we like. In this particular case, the objective is
to put x0 and x1 at the beginning of the inputs (so that they can play the role
of the surviving variables in the parameter theorem), while placing e at the end
(because we want it to be the parameter that is held constant).

f(x1, x0) = apply-binary(e, x1, x0)

= [◦33 apply-binary pr2
3 pr1

3 pr0
3](x0, x1, e)

Now, [◦33 apply-binary pr2
3 pr1

3 pr0
3] is, by construction, a partial recur-

sive function, so it too will have an encoding, say t. Let t-encoded be a nullary
function that outputs t.

It is now straightforward to define the converse function:

converse ≡ [◦21 section2
1 t-encoded1 pr0

1]

To see that this is the correct definition, consider what happens when we
apply it to the encoding e of a binary, partial recursive function f :

converse(e) = [◦21 section2
1 t-encoded1 pr0

1](e)

= section2
1(t, e)



105

By the definition of section2
1, section2

1(t, e) encodes a function g such that

g(x0, x1) = [◦33 apply-binary pr2
3 pr1

3 pr0
3](x0, x1, e)

= apply-binary(e, x1, x0)

= f(x1, x0)

as required.

Exercises

20–1 Suppose that r encodes the function multiply. Describe the function
that section1

1(r, 12) encodes.

20–2 Using the parameter theorem, prove that there is a singulary, primitive
recursive function bumper that takes as input the encoding for any singular,
partial recursive function f and outputs the encoding for a singulary, partial
recursive function g such that, for every natural number x, g(x) = f(x) + 1.

20–3 Using the parameter theorem, prove that there is a singulary, primitive
recursive function fuse-inputs that takes as input the encoding for any binary,
partial recursive function f and outputs the encoding for a singulary, partial
recursive function g such that, for every natural number x, g(x) = f(x, x).
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Chapter 21

The Recursion Theorem

Theorem 21.1 There is a nullary, primitive recursive function self that out-
puts its own encoding.

First, let’s develop a helper function, compose-with-constantification.
This is a singulary function that inputs the encoding for any singulary partial
recursive function f , computes (as an intermediate result) the encoding for a
nullary function f• that outputs the encoding for f , and finally computes and
outputs the encoding for the composition of f and f•:

compose-with-constantification ≡
[◦31 encode-composition

one1

zero1

[◦21 cons pr0
1 [◦21 cons constantify nil1]]]

Since compose-with-constantification is primitive recursive, there is a
natural number c that encodes it, and there is a nullary function constant-c

that outputs c. That’s all we need in order to define self:

self ≡ [◦10 compose-with-constantification constant-c]

Theorem 21.2 For any binary, partial recursive function t, there is a singu-
lary, partial recursive function r such that, for every natural number x, r(x) =
t(r̄, x), where r̄ is the encoding for r.

Proof: Since t is a partial recursive function, it has an encoding. Let
constant-t be a nullary function that returns the encoding for t.

Our helper function this time is a little more complicated, because of the
need to carry along the input x and the consequent adjustments to valences:
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recursion-theorem-helper ≡
[◦31 encode-composition

two1

one1

[◦21 cons

[◦01 constant-t]

[◦21 cons

[◦31 encode-composition

one1

one1

[◦21 cons

pr0
1

[◦21 cons

[◦31 encode-composition

zero1

one1

[◦21 cons constantify nil1]]

nil1]]]

[◦21 cons

[◦21 encode-projection-function zero1 one1]

nil1]]]]

For any fixed choice of t, recursion-theorem-helper has an encoding h,
and so there is a nullary, primitive recursive function constant-h that outputs
h. Then we can define r thus:

r ≡ [◦21 t
[◦11 recursion-theorem-helper [◦01 constant-h]]

pr0
1]

Careful comparison of the definition of recursion-theorem-helper with
the definition of r shows that, when recursion-theorem-helper is given its
own encoding h as input, it outputs the encoding for r. Since r works by feed-
ing h to recursion-theorem-helper and transmitting the result, along with
its own input, to t, the construction guarantees that r responds to any input
just the way t responds if given the encoding for r as its first input and the
input to r as its second, as required.

Exercises

21–1 Prove that there is a singulary, primitive recursive function, which we
might call add-to-self, that takes as input any natural number n and outputs
the sum of n and its own encoding.
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21–2 Prove that there is a singulary, partial recursive function, which we
might call apply-to-self, that takes as input the encoding e for any singulary,
partial recursive function f and outputs the result of applying f to its own
encoding (that is, to apply-to-self’s encoding). (If the result of applying f
to apply-to-self’s encoding is undefined, then apply-to-self(e) ↑ as well.)

21–3 Let a be the encoding of the apply-to-self function in the preceding
exercise. Is apply-to-self(a) defined?
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Chapter 22

Rice’s Theorem

We have seen that the class of recursive functions includes an immense variety
of useful numerical functions and provides a computational framework within
which many kinds of algorithms can be expressed and studied. We have also
seen that it is possible to deploy this framework reflexively, finding explicit data
representations, “programs,” for all partial recursive functions and developing
tools for analyzing such representations.

It is true that we have encountered some limitations on this approach. We
found that such predicates as defined? and runs-forever? are not recursive
or even partial recursive, and that the characteristic function of K is not recur-
sive. However, it is tempting to suppose that this phenomenon is limited to a
few extreme or pathological cases, and that the reflexive application of recursive
function theory could succeed in other, less overtly paradoxical cases. Unfortu-
nately, the very power of this approach limits its utility. It turns out that the
most interesting properties of partial recursive functions cannot be expressed
by recursive predicates or recursive sets.

Let’s say that a set S of natural numbers is functionally consistent if, for
every partial recursive function f , either all of the encodings of f are members
of S or none of them are. The idea is that we want to think of S as a set of
partial recursive functions, not just as a set of encodings for such functions, so
we want to exclude cases in which f belongs to the set S when it is encoded
one way but fails to belong when it is encoded some other way. Requiring S to
be functionally consistent ensures that we can think of S in this way without
running into contradictions.

(A minor technical point: Since some natural numbers don’t encode par-
tial recursive functions at all, the preceding definition of functional consistency
doesn’t constrain their membership or non-membership. Adding a clause to
deal with these non-encoding numbers is technically convenient and simplifies
proofs about functionally consistent sets. Since apply(e, nil) ↑ when e does not
encode any function, it seems most natural to regard all such natural numbers
as “pseudo-encodings” for mist. We’ll stipulate, then, that to count as func-
tionally consistent S must contain all of the non-encoding natural numbers if it
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contains the encodings for mist, and must not contain any of the non-encoding
natural numbers if it does not contain the encodings for mist.)

Now we’re ready to state and prove Rice’s Theorem:

Theorem 22.1 No functionally consistent set S of natural numbers other than
∅ and N is recursive.

Proof. Let S be any functionally consistent set S of natural numbers other
than ∅ and N. The proof is by contradiction. We’ll start by assuming that that
S is recursive, and on that basis derive the conclusion that the set K (as defined
in §15) is also recursive. Since this conclusion contradicts Theorem 15.2, thus
disproving the assumption that S is recursive.

Case A. Suppose, first, that the encodings for mist1 are not members of
S. Let f be any partial recursive function whose encodings are members of S.
(There must be at least one such function, since otherwise S would be ∅.) Let
g be the binary function defined by

[◦22 pr1
2 [◦12 [◦21 apply car cdr] pr1

2] [◦12 f pr0
2]]

and let ḡ be an encoding for g.
Given two arguments, n and x, the function g tries to compute two values

and selects the second of them if both are defined; otherwise, g(n, x) ↑. The first
of these two values is [◦21 apply car cdr](x) and the second is f(n):

g(n, x) = [◦22 pr1
2 [◦12 [◦21 apply car cdr] pr1

2] [◦12 f pr0
2]](n, x)

= pr1
2([◦12 [◦21 apply car cdr] pr1

2](n, x), [◦12 f pr0
2](n, x))

= pr1
2([◦21 apply car cdr](pr1

2(n, x)), f(pr0
2(n, x)))

= pr1
2([◦21 apply car cdr](x), f(n)).

Now, if x ∈ K, [◦21 apply car cdr](x) ↓, in which case g(n, x) = f(n)
when f(n) ↓, and g(n, x) ↑ when f(n) ↑. If we regard x as a fixed parameter
in a sectioning operation and allow only n to vary, the resulting section of g
is precisely f . But, by the parameter theorem (20.1), section1

1(ḡ, x) is the
encoding for that section of g, which is therefore also an encoding for f and
hence a member of S. So if x ∈ K, section1

1(ḡ, x) ∈ S.
On the other hand, if x /∈ K, [◦21 apply car cdr](x) ↑, so that g(n, x) ↑

regardless of what happens with f(n). This time, if we regard x as a fixed
parameter in a sectioning operation and allow only n to vary, the resulting
section of g is precisely mist1. But encodings for mist1 are non-members of S,
so that section1

1(ḡ, x) /∈ S.
Combining these results, x ∈ K if, and only if, section1

1(ḡ, x) ∈ S. Now, if
S were recursive, its characteristic function p would also be recursive. But in
that case

[◦11 p [◦21 section1
1 g-bar-encoded1 pr0

1]]

(where g-bar-encoded is a nullary function that returns ḡ) would be a recursive
characteristic function for K, since p, section1

1, g-bar-encoded, and pr0
1 are all
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both partial recursive and total, and so therefore are their compositions. A set
that has a recursive characteristic function is recursive, so K must be recursive.
Yet we know from Theorem 15.2 that K is not recursive, so the assumption that
S is recursive is disproven.

Case B. Alternatively, then, suppose that the encodings for mist1 are mem-
bers of S, and this time f be any partial recursive function whose encodings are
not members of S. (Again, there must be at least one such function, because
otherwise S would be N.) Essentially the same line of reasoning now shows
that x ∈ K if, and only if, section1

1(ḡ, x) /∈ S (since the section of g in which
x is a fixed parameter matches f when x ∈ K and mist1 when x /∈ K), but
this time the encodings of mist1 are members of S and the encodings of f are
non-members of S.

As before, if S were recursive, it would have a recursive characteristic func-
tion p. But then

[◦11 [◦11 not p] [◦21 section1
1 g-bar-encoded1 pr0

1]]

would be a recursive characteristic function for K, implying that K is recursive,
which again contradicts Theorem 15.2.

The import of Rice’s Theorem is that any property of partial recursive func-
tions that is non-trivial (in the sense that some partial recursive functions have
the property and others do not) cannot be tested by applying a recursive predi-
cate to an encoding for a candidate function, nor can one represent the property
as a recursive set containing exactly the encodings of the functions that have
the property. No such recursive predicate or recursive set exists.

Exercises

22–1 Let S be the set of natural numbers that encode partial recursive func-
tions f such that f(n) = 0 for some n ∈ N. Prove that S is not recursive.

.

22–2 Let p be the predicate defined by

p(n) =

{
0 if n encodes a function f such that f(0) = 42,

1 otherwise.

Prove that p is not partial recursive.

22–3 Prove that the set of encodings for Turing machines that recognize the
empty language is not a recursive set.

22–4 The set S of natural numbers n that satisfy both function? and
checked-composition-function? includes at least one encoding for every par-
tial recursive function that can be defined by composition, and does not contain
any encoding for any partial recursive function that cannot be defined by com-
position. Show that S is nevertheless a recursive set, and explain why this result
does not contradict Rice’s Theorem.
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